Eigen Namespace Reference

: TensorContractionSycl.h, provides various tensor contraction kernel for SYCL backend More...

Namespaces

 Architecture
 
 bfloat16_impl
 
 doxygen
 
 half_impl
 
 HybridNonLinearSolverSpace
 
 indexing
 
 internal
 
 LevenbergMarquardtSpace
 
 MatrixBase
 
 numext
 
 placeholders
 
 RunQueue
 
 Serializer
 
 SimplicialCholeskyBase
 
 SparseMatrix
 
 SparseMatrixBase
 
 StlThreadEnvironment
 
 symbolic
 
 TensorSycl
 
 ThreadLocal
 
 ThreadPoolTempl
 
 VectorwiseOp
 

Classes

class  AccelerateImpl
 
class  AdolcForwardJacobian
 
class  aligned_allocator
 
class  aligned_allocator_indirection
 
class  AlignedBox
 
class  AlignedVector3
 A vectorization friendly 3D vector. More...
 
class  AMDOrdering
 
class  AngleAxis
 
struct  AntiHermiticity
 
struct  AntiSymmetry
 
class  ArithmeticSequence
 
class  ArpackGeneralizedSelfAdjointEigenSolver
 
class  Array
 
class  ArrayBase
 
class  ArrayWrapper
 
struct  ArrayXpr
 
class  AutoDiffJacobian
 
class  AutoDiffScalar
 A scalar type replacement with automatic differentiation capability. More...
 
class  AutoDiffVector
 
struct  BandShape
 
class  Barrier
 
class  BDCSVD
 
struct  bfloat16
 
class  BiCGSTAB
 
class  BiCGSTABL
 
class  Block
 
class  BlockImpl
 
class  BlockImpl< const SparseMatrix< Scalar_, Options_, StorageIndex_ >, BlockRows, BlockCols, true, Sparse >
 
class  BlockImpl< SparseMatrix< Scalar_, Options_, StorageIndex_ >, BlockRows, BlockCols, true, Sparse >
 
class  BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Dense >
 
class  BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Sparse >
 
class  BlockImpl< XprType, BlockRows, BlockCols, true, Sparse >
 
class  BlockSparseMatrix
 A versatile sparse matrix representation where each element is a block. More...
 
class  BlockSparseMatrixView
 
class  BlockSparseTimeDenseProduct
 
class  BlockVectorReturn
 
class  BlockVectorView
 
class  CholmodBase
 
class  CholmodDecomposition
 
class  CholmodSimplicialLDLT
 
class  CholmodSimplicialLLT
 
class  CholmodSupernodalLLT
 
struct  CleanedUpDerType
 
class  COLAMDOrdering
 
class  ColPivHouseholderQR
 
class  CommaInitializer
 
class  CompleteOrthogonalDecomposition
 
class  ComplexEigenSolver
 
class  ComplexSchur
 
struct  Cond
 
class  Conjugate
 
class  ConjugateGradient
 
struct  ConversionSubExprEval
 
struct  ConversionSubExprEval< true, Eval, EvalPointerType >
 
class  CwiseBinaryOp
 
class  CwiseBinaryOpImpl
 
class  CwiseBinaryOpImpl< BinaryOp, Lhs, Rhs, Sparse >
 
class  CwiseNullaryOp
 
class  CwiseTernaryOp
 
class  CwiseTernaryOpImpl
 
class  CwiseUnaryOp
 
class  CwiseUnaryOpImpl
 
class  CwiseUnaryView
 
class  CwiseUnaryViewImpl
 
class  CwiseUnaryViewImpl< ViewOp, MatrixType, StrideType, Dense >
 
struct  default_fft_impl
 
struct  DefaultDevice
 
struct  Dense
 
class  DenseBase
 
class  DenseCoeffsBase
 
class  DenseCoeffsBase< Derived, DirectAccessors >
 
class  DenseCoeffsBase< Derived, DirectWriteAccessors >
 
class  DenseCoeffsBase< Derived, ReadOnlyAccessors >
 
class  DenseCoeffsBase< Derived, WriteAccessors >
 
struct  DenseFunctor
 
struct  DenseShape
 
struct  DenseSparseProductReturnType
 
class  DenseStorage
 
class  DenseTimeSparseProduct
 
class  DGMRES
 A Restarted GMRES with deflation. This class implements a modification of the GMRES solver for sparse linear systems. The basis is built with modified Gram-Schmidt. At each restart, a few approximated eigenvectors corresponding to the smallest eigenvalues are used to build a preconditioner for the next cycle. This preconditioner for deflation can be combined with any other preconditioner, the IncompleteLUT for instance. The preconditioner is applied at right of the matrix and the combination is multiplicative. More...
 
class  Diagonal
 
class  DiagonalBase
 
class  DiagonalMatrix
 
class  DiagonalPreconditioner
 
class  DiagonalProduct
 
struct  DiagonalShape
 
class  DiagonalWrapper
 
struct  DimensionList
 
struct  DSizes
 
class  DynamicSGroup
 Dynamic symmetry group. More...
 
class  DynamicSGroupFromTemplateArgs
 
class  DynamicSkylineMatrix
 
class  EigenBase
 
struct  EigenConvolutionKernel
 
struct  EigenConvolutionKernel< Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor, Buffer_accessor, convolution_type::CONV1D >
 
struct  EigenConvolutionKernel< Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor, Buffer_accessor, convolution_type::CONV2D >
 
struct  EigenConvolutionKernel< Evaluator, CoeffReturnType, KernelType, Index, InputDims, Kernel_accessor, Buffer_accessor, convolution_type::CONV3D >
 
class  EigenSolver
 
class  EulerAngles
 Represents a rotation in a 3 dimensional space as three Euler angles. More...
 
class  EulerSystem
 Represents a fixed Euler rotation system. More...
 
class  EventCount
 
class  FABSum
 
class  FFT
 
struct  fft_fwd_proxy
 
struct  fft_inv_proxy
 
class  ForceAlignedAccess
 
class  FullPivHouseholderQR
 
class  FullPivLU
 
struct  general_product_to_triangular_selector
 
struct  general_product_to_triangular_selector< MatrixType, ProductType, UpLo, false >
 
struct  general_product_to_triangular_selector< MatrixType, ProductType, UpLo, true >
 
class  GeneralizedEigenSolver
 
class  GeneralizedSelfAdjointEigenSolver
 
struct  GenericNumTraits
 
class  GMRES
 A GMRES solver for sparse square problems. More...
 
struct  half
 
struct  Hermiticity
 
class  HessenbergDecomposition
 
class  Homogeneous
 
struct  HomogeneousShape
 
class  HouseholderQR
 
class  HouseholderSequence
 
class  HybridNonLinearSolver
 Finds a zero of a system of n nonlinear functions in n variables by a modification of the Powell hybrid method ("dogleg"). More...
 
class  Hyperplane
 
class  IdentityPreconditioner
 
class  IDRS
 The Induced Dimension Reduction method (IDR(s)) is a short-recurrences Krylov method for sparse square problems. More...
 
class  IDRSTABL
 The IDR(s)STAB(l) is a combination of IDR(s) and BiCGSTAB(l). It is a short-recurrences Krylov method for sparse square problems. It can outperform both IDR(s) and BiCGSTAB(l). IDR(s)STAB(l) generally closely follows the optimal GMRES convergence in terms of the number of Matrix-Vector products. However, without the increasing cost per iteration of GMRES. IDR(s)STAB(l) is suitable for both indefinite systems and systems with complex eigenvalues. More...
 
class  IncompleteCholesky
 
class  IncompleteLU
 
class  IncompleteLUT
 
class  IndexedView
 
class  IndexedViewImpl
 
struct  IndexList
 
struct  IndexPair
 
struct  IndexPairList
 
class  InnerStride
 
class  Inverse
 
class  InverseImpl
 
class  InverseImpl< PermutationType, PermutationStorage >
 
class  IOFormat
 
class  IterativeSolverBase
 
class  IterScaling
 iterative scaling algorithm to equilibrate rows and column norms in matrices More...
 
class  JacobiRotation
 
class  JacobiSVD
 
class  KahanSum
 Kahan algorithm based accumulator. More...
 
class  KdBVH
 A simple bounding volume hierarchy based on AlignedBox. More...
 
class  KLU
 
class  KroneckerProduct
 Kronecker tensor product helper class for dense matrices. More...
 
class  KroneckerProductBase
 The base class of dense and sparse Kronecker product. More...
 
class  KroneckerProductSparse
 Kronecker tensor product helper class for sparse matrices. More...
 
struct  LazyProductReturnType
 
class  LDLT
 
class  LeastSquareDiagonalPreconditioner
 
class  LeastSquaresConjugateGradient
 
class  LevenbergMarquardt
 Performs non linear optimization over a non-linear function, using a variant of the Levenberg Marquardt algorithm. More...
 
class  LLT
 
struct  MakeComplex
 
struct  MakeComplex< false >
 
struct  MakeComplex< true >
 
struct  MakePointer
 
class  Map
 
class  Map< const Quaternion< Scalar_ >, Options_ >
 
class  Map< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_ >, PacketAccess_ >
 
class  Map< Quaternion< Scalar_ >, Options_ >
 
class  Map< SparseMatrixType >
 
class  Map< Transpositions< SizeAtCompileTime, MaxSizeAtCompileTime, StorageIndex_ >, PacketAccess >
 
class  MapBase
 
class  MapBase< Derived, ReadOnlyAccessors >
 
class  MapBase< Derived, WriteAccessors >
 
class  MappedSkylineMatrix
 
class  Matrix
 
class  MatrixBase
 
class  MatrixComplexPowerReturnValue
 Proxy for the matrix power of some matrix (expression).
 
struct  MatrixExponentialReturnValue
 Proxy for the matrix exponential of some matrix (expression).
 
class  MatrixFunctionReturnValue
 Proxy for the matrix function of some matrix (expression).
 
class  MatrixLogarithmReturnValue
 Proxy for the matrix logarithm of some matrix (expression).
 
class  MatrixMarketIterator
 Iterator to browse matrices from a specified folder. More...
 
class  MatrixPower
 Class for computing matrix powers. More...
 
class  MatrixPowerAtomic
 Class for computing matrix powers. More...
 
class  MatrixPowerParenthesesReturnValue
 Proxy for the matrix power of some matrix. More...
 
class  MatrixPowerReturnValue
 Proxy for the matrix power of some matrix (expression).
 
class  MatrixSquareRootReturnValue
 Proxy for the matrix square root of some matrix (expression).
 
class  MatrixWrapper
 
struct  MatrixXpr
 
struct  max_n_1
 
struct  max_n_1< 0 >
 
class  MaxSizeVector
 
class  MetisOrdering
 
class  MINRES
 A minimal residual solver for sparse symmetric problems. More...
 
class  NaturalOrdering
 
class  NestByValue
 
class  NNLS
 Implementation of the Non-Negative Least Squares (NNLS) algorithm. More...
 
class  NoAlias
 
struct  NoOpOutputKernel
 
struct  Notification
 
class  NumericalDiff
 
class  NumTraits
 
struct  NumTraits< adtl::adouble >
 
struct  NumTraits< Array< Scalar, Rows, Cols, Options, MaxRows, MaxCols > >
 
struct  NumTraits< AutoDiffScalar< DerType > >
 
struct  NumTraits< bool >
 
struct  NumTraits< double >
 
struct  NumTraits< Eigen::bfloat16 >
 
struct  NumTraits< Eigen::half >
 
struct  NumTraits< float >
 
struct  NumTraits< long double >
 
struct  NumTraits< mpfr::mpreal >
 
struct  NumTraits< std::complex< Real_ > >
 
struct  NumTraits< std::string >
 
struct  NumTraits< type2index< n > >
 
struct  NumTraits< void >
 
class  OuterStride
 
struct  PacketConverter
 
struct  PacketConverter< TensorEvaluator, SrcPacket, TgtPacket, 1, 1 >
 
struct  PacketConverter< TensorEvaluator, SrcPacket, TgtPacket, 1, TgtCoeffRatio >
 
struct  PacketConverter< TensorEvaluator, SrcPacket, TgtPacket, 2, 1 >
 
struct  PacketConverter< TensorEvaluator, SrcPacket, TgtPacket, 4, 1 >
 
struct  PacketConverter< TensorEvaluator, SrcPacket, TgtPacket, 8, 1 >
 
struct  PacketType
 
struct  Pair
 
class  ParametrizedLine
 
class  PardisoImpl
 
class  PardisoLDLT
 
class  PardisoLLT
 
class  PardisoLU
 
struct  partial_redux_dummy_func
 
class  PartialPivLU
 
class  PartialReduxExpr
 
struct  PartOf
 
struct  PartOf< ImagPart >
 
struct  PartOf< RealPart >
 
class  PastixBase
 
class  PastixLDLT
 
class  PastixLLT
 
class  PastixLU
 
class  PermutationBase
 
class  PermutationMatrix
 
struct  PermutationShape
 
struct  PermutationStorage
 
class  PermutationWrapper
 
class  PlainObjectBase
 
class  PolynomialSolver
 A polynomial solver. More...
 
class  PolynomialSolver< Scalar_, 1 >
 
class  PolynomialSolverBase
 Defined to be inherited by polynomial solvers: it provides convenient methods such as. More...
 
class  Product
 
class  ProductImpl
 
class  ProductImpl< Lhs, Rhs, Option, Dense >
 
struct  ProductReturnType
 
class  Quaternion
 
class  QuaternionBase
 
class  RandomSetter
 The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access. More...
 
class  RealQZ
 
class  RealSchur
 
class  Ref
 
class  Ref< const SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 
class  Ref< const SparseVector< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 
class  Ref< const TPlainObjectType, Options, StrideType >
 
class  Ref< SparseMatrixType, Options >
 
class  Ref< SparseVectorType >
 
class  RefBase
 
class  Replicate
 
class  Reshaped
 
class  ReshapedImpl
 
class  ReshapedImpl< XprType, Rows, Cols, Order, Dense >
 
class  ReturnByValue
 
class  Reverse
 
class  Rotation2D
 
class  RotationBase
 
class  RunQueue
 
class  ScalarBinaryOpTraits
 
struct  ScalarBinaryOpTraits< AutoDiffScalar< DerType >, typename DerType::Scalar, BinOp >
 
struct  ScalarBinaryOpTraits< T, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< T, typename NumTraits< std::enable_if_t< NumTraits< T >::IsComplex, T > >::Real, BinaryOp >
 
struct  ScalarBinaryOpTraits< T, void, BinaryOp >
 
struct  ScalarBinaryOpTraits< typename DerType::Scalar, AutoDiffScalar< DerType >, BinOp >
 
struct  ScalarBinaryOpTraits< typename NumTraits< std::enable_if_t< NumTraits< T >::IsComplex, T > >::Real, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< void, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< void, void, BinaryOp >
 
class  Select
 
struct  selfadjoint_product_selector
 
struct  selfadjoint_product_selector< MatrixType, OtherType, UpLo, false >
 
struct  selfadjoint_product_selector< MatrixType, OtherType, UpLo, true >
 
struct  selfadjoint_rank1_update
 
struct  selfadjoint_rank1_update< Scalar, Index, ColMajor, UpLo, ConjLhs, ConjRhs >
 
struct  selfadjoint_rank1_update< Scalar, Index, RowMajor, UpLo, ConjLhs, ConjRhs >
 
class  SelfAdjointEigenSolver
 
struct  SelfAdjointShape
 
class  SelfAdjointView
 
class  Serializer
 
class  Serializer< Array< Scalar, Rows, Cols, Options, MaxRows, MaxCols > >
 
class  Serializer< DenseBase< Derived >, void >
 
class  Serializer< Matrix< Scalar, Rows, Cols, Options, MaxRows, MaxCols > >
 
class  Serializer< SparseMatrix< Scalar, Options, StorageIndex >, void >
 
class  Serializer< SparseVector< Scalar, Options, StorageIndex >, void >
 
class  Serializer< T, typename std::enable_if_t< std::is_trivial< T >::value &&std::is_standard_layout< T >::value > >
 
class  SGroup
 Symmetry group, initialized from template arguments. More...
 
class  SimplicialCholesky
 
class  SimplicialCholeskyBase
 
class  SimplicialLDLT
 
class  SimplicialLLT
 
struct  Sizes
 
class  SkewSymmetricBase
 
class  SkewSymmetricMatrix3
 
struct  SkewSymmetricShape
 
class  SkewSymmetricWrapper
 
class  SkylineInplaceLU
 Inplace LU decomposition of a skyline matrix and associated features. More...
 
class  SkylineMatrix
 The main skyline matrix class. More...
 
class  SkylineMatrixBase
 Base class of any skyline matrices or skyline expressions. More...
 
class  SkylineProduct
 
struct  SkylineProductReturnType
 
class  SkylineStorage
 
class  SkylineVector
 
struct  SluMatrix
 
struct  SluMatrixMapHelper
 
struct  SluMatrixMapHelper< Matrix< Scalar, Rows, Cols, Options, MRows, MCols > >
 
struct  SluMatrixMapHelper< SparseMatrixBase< Derived > >
 
class  Solve
 
class  SolveImpl
 
class  SolveImpl< Decomposition, RhsType, Dense >
 
class  SolverBase
 
struct  SolverShape
 
struct  SolverStorage
 
class  SolveWithGuess
 
struct  Sparse
 
class  SparseCompressedBase
 
class  SparseDenseOuterProduct
 
struct  SparseDenseProductReturnType
 
class  SparseDiagonalProduct
 
struct  SparseFunctor
 
class  SparseInverse
 calculate sparse subset of inverse of sparse matrix More...
 
class  SparseLU
 
struct  SparseLUMatrixLReturnType
 
struct  SparseLUMatrixUReturnType
 
class  SparseLUTransposeView
 
class  SparseMapBase
 
class  SparseMapBase< Derived, ReadOnlyAccessors >
 
class  SparseMapBase< Derived, WriteAccessors >
 
class  SparseMatrix
 
class  SparseMatrixBase
 
class  SparseQR
 
struct  SparseQR_QProduct
 
struct  SparseQRMatrixQReturnType
 
struct  SparseQRMatrixQTransposeReturnType
 
class  SparseSelfAdjointView
 
struct  SparseShape
 
class  SparseSolverBase
 
class  SparseSparseProduct
 
struct  SparseSparseProductReturnType
 
class  SparseSymmetricPermutationProduct
 
class  SparseTimeDenseProduct
 
class  SparseVector
 
class  SparseView
 
class  Spline
 A class representing multi-dimensional spline curves. More...
 
struct  SplineFitting
 Spline fitting methods. More...
 
struct  SplineTraits
 
struct  SplineTraits< Spline< Scalar_, Dim_, Degree_ >, _DerivativeOrder >
 Compile-time attributes of the Spline class for fixed degree. More...
 
struct  SplineTraits< Spline< Scalar_, Dim_, Degree_ >, Dynamic >
 Compile-time attributes of the Spline class for Dynamic degree. More...
 
class  SPQR
 
struct  SPQR_QProduct
 
struct  SPQRMatrixQReturnType
 
struct  SPQRMatrixQTransposeReturnType
 
class  StaticSGroup
 Static symmetry group. More...
 
struct  StdMapTraits
 
struct  StdUnorderedMapTraits
 
struct  StlThreadEnvironment
 
struct  StorageMemory
 
class  Stride
 
class  SuperILU
 
class  SuperLU
 
class  SuperLUBase
 
class  SVDBase
 
class  SwapWrapper
 
struct  Symmetry
 
class  Tensor
 The tensor class. More...
 
class  TensorAssignOp
 
class  TensorAsyncDevice
 Pseudo expression providing an operator = that will evaluate its argument asynchronously on the specified device. Currently only ThreadPoolDevice implements proper asynchronous execution, while the default and GPU devices just run the expression synchronously and call m_done() on completion.. More...
 
class  TensorBase
 The tensor base class. More...
 
class  TensorBroadcastingOp
 
class  TensorChippingOp
 
class  TensorConcatenationOp
 Tensor concatenation class. More...
 
struct  TensorContractionEvaluatorBase
 
class  TensorContractionOp
 
struct  TensorContractionParams
 
class  TensorConversionOp
 Tensor conversion class. This class makes it possible to vectorize type casting operations when the number of scalars per packet in the source and the destination type differ. More...
 
class  TensorConvolutionOp
 
class  TensorCostModel
 
class  TensorCustomBinaryOp
 Tensor custom class. More...
 
class  TensorCustomUnaryOp
 Tensor custom class. More...
 
class  TensorCwiseBinaryOp
 
class  TensorCwiseNullaryOp
 
class  TensorCwiseTernaryOp
 
class  TensorCwiseUnaryOp
 
class  TensorDevice
 Pseudo expression providing an operator = that will evaluate its argument on the specified computing 'device' (GPU, thread pool, ...) More...
 
class  TensorEvalToOp
 
class  TensorEvaluator
 A cost model used to limit the number of threads used for evaluating tensor expression. More...
 
struct  TensorEvaluator< const Derived, Device >
 
struct  TensorEvaluator< const TensorAssignOp< LeftArgType, RightArgType >, Device >
 
struct  TensorEvaluator< const TensorBroadcastingOp< Broadcast, ArgType >, Device >
 
struct  TensorEvaluator< const TensorChippingOp< DimId, ArgType >, Device >
 
struct  TensorEvaluator< const TensorConcatenationOp< Axis, LeftArgType, RightArgType >, Device >
 
struct  TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Device >
 
struct  TensorEvaluator< const TensorContractionOp< Indices, LeftArgType, RightArgType, OutputKernelType >, Eigen::SyclDevice >
 
struct  TensorEvaluator< const TensorConversionOp< TargetType, ArgType >, Device >
 
struct  TensorEvaluator< const TensorConvolutionOp< Indices, InputArgType, KernelArgType >, Device >
 
struct  TensorEvaluator< const TensorConvolutionOp< Indices, InputArgType, KernelArgType >, Eigen::SyclDevice >
 
struct  TensorEvaluator< const TensorCustomBinaryOp< CustomBinaryFunc, LhsXprType, RhsXprType >, Device >
 
struct  TensorEvaluator< const TensorCustomUnaryOp< CustomUnaryFunc, XprType >, Device >
 
struct  TensorEvaluator< const TensorCwiseBinaryOp< BinaryOp, LeftArgType, RightArgType >, Device >
 
struct  TensorEvaluator< const TensorCwiseNullaryOp< NullaryOp, ArgType >, Device >
 
struct  TensorEvaluator< const TensorCwiseTernaryOp< TernaryOp, Arg1Type, Arg2Type, Arg3Type >, Device >
 
struct  TensorEvaluator< const TensorCwiseUnaryOp< UnaryOp, ArgType >, Device >
 
struct  TensorEvaluator< const TensorEvalToOp< ArgType, MakePointer_ >, Device >
 
struct  TensorEvaluator< const TensorFFTOp< FFT, ArgType, FFTResultType, FFTDir >, Device >
 
struct  TensorEvaluator< const TensorForcedEvalOp< ArgType_ >, Device >
 
struct  TensorEvaluator< const TensorGeneratorOp< Generator, ArgType >, Device >
 
struct  TensorEvaluator< const TensorImagePatchOp< Rows, Cols, ArgType >, Device >
 
struct  TensorEvaluator< const TensorIndexPairOp< ArgType >, Device >
 
struct  TensorEvaluator< const TensorInflationOp< Strides, ArgType >, Device >
 
struct  TensorEvaluator< const TensorLayoutSwapOp< ArgType >, Device >
 
struct  TensorEvaluator< const TensorPaddingOp< PaddingDimensions, ArgType >, Device >
 
struct  TensorEvaluator< const TensorPairReducerOp< ReduceOp, Dims, ArgType >, Device >
 
struct  TensorEvaluator< const TensorPatchOp< PatchDim, ArgType >, Device >
 
struct  TensorEvaluator< const TensorReductionOp< Op, Dims, ArgType, MakePointer_ >, Device >
 
struct  TensorEvaluator< const TensorReductionOp< Op, Dims, ArgType, MakePointer_ >, Eigen::SyclDevice >
 
struct  TensorEvaluator< const TensorRef< Derived >, Device >
 
struct  TensorEvaluator< const TensorReshapingOp< NewDimensions, ArgType >, Device >
 
struct  TensorEvaluator< const TensorReverseOp< ReverseDimensions, ArgType >, Device >
 
struct  TensorEvaluator< const TensorScanOp< Op, ArgType >, Device >
 
struct  TensorEvaluator< const TensorSelectOp< IfArgType, ThenArgType, ElseArgType >, Device >
 
struct  TensorEvaluator< const TensorShufflingOp< Shuffle, ArgType >, Device >
 
struct  TensorEvaluator< const TensorSlicingOp< StartIndices, Sizes, ArgType >, Device >
 
struct  TensorEvaluator< const TensorStridingOp< Strides, ArgType >, Device >
 
struct  TensorEvaluator< const TensorStridingSlicingOp< StartIndices, StopIndices, Strides, ArgType >, Device >
 
struct  TensorEvaluator< const TensorTraceOp< Dims, ArgType >, Device >
 
struct  TensorEvaluator< const TensorVolumePatchOp< Planes, Rows, Cols, ArgType >, Device >
 
struct  TensorEvaluator< TensorChippingOp< DimId, ArgType >, Device >
 
struct  TensorEvaluator< TensorConcatenationOp< Axis, LeftArgType, RightArgType >, Device >
 
struct  TensorEvaluator< TensorLayoutSwapOp< ArgType >, Device >
 
struct  TensorEvaluator< TensorRef< Derived >, Device >
 
struct  TensorEvaluator< TensorReshapingOp< NewDimensions, ArgType >, Device >
 
struct  TensorEvaluator< TensorReverseOp< ReverseDimensions, ArgType >, Device >
 
struct  TensorEvaluator< TensorShufflingOp< Shuffle, ArgType >, Device >
 
struct  TensorEvaluator< TensorSlicingOp< StartIndices, Sizes, ArgType >, Device >
 
struct  TensorEvaluator< TensorStridingOp< Strides, ArgType >, Device >
 
struct  TensorEvaluator< TensorStridingSlicingOp< StartIndices, StopIndices, Strides, ArgType >, Device >
 
class  TensorFFTOp
 
class  TensorFixedSize
 The fixed sized version of the tensor class. More...
 
class  TensorForcedEvalOp
 
class  TensorGeneratorOp
 Tensor generator class. More...
 
class  TensorImagePatchOp
 
class  TensorIndexPairOp
 
class  TensorInflationOp
 
struct  TensorIOFormat
 
class  TensorLayoutSwapOp
 
class  TensorMap
 A tensor expression mapping an existing array of data. More...
 
class  TensorOpCost
 
class  TensorPaddingOp
 
class  TensorPairReducerOp
 
class  TensorPatchOp
 
struct  TensorReductionEvaluatorBase
 
struct  TensorReductionEvaluatorBase< const TensorReductionOp< Op, Dims, ArgType, MakePointer_ >, Device >
 
class  TensorReductionOp
 
class  TensorRef
 A reference to a tensor expression The expression will be evaluated lazily (as much as possible). More...
 
class  TensorReshapingOp
 
class  TensorReverseOp
 
class  TensorScanOp
 
class  TensorSelectOp
 
class  TensorShufflingOp
 
class  TensorSlicingOp
 
class  TensorStorage
 
class  TensorStorage< T, DSizes< IndexType, NumIndices_ >, Options_ >
 
class  TensorStridingOp
 
class  TensorStridingSlicingOp
 
class  TensorTraceOp
 
class  TensorVolumePatchOp
 
class  TensorWithFormat
 
class  TensorWithFormat< T, ColMajor, 0 >
 
class  TensorWithFormat< T, ColMajor, rank >
 
class  TensorWithFormat< T, RowMajor, rank >
 
class  ThreadLocal
 
class  ThreadPoolInterface
 
class  ThreadPoolTempl
 
class  Transform
 
class  Translation
 
class  Transpose
 
class  Transpose< TranspositionsBase< TranspositionsDerived > >
 
class  TransposeImpl
 
class  TransposeImpl< MatrixType, Dense >
 
class  TransposeImpl< MatrixType, Sparse >
 
class  Transpositions
 
class  TranspositionsBase
 
struct  TranspositionsShape
 
struct  TranspositionsStorage
 
class  TranspositionsWrapper
 
class  TriangularBase
 
struct  TriangularShape
 
class  TriangularView
 
class  TriangularViewImpl
 
class  TriangularViewImpl< MatrixType, Mode, Sparse >
 
class  TriangularViewImpl< MatrixType_, Mode_, Dense >
 
class  Tridiagonalization
 
class  Triplet
 
struct  type2index
 
struct  type2indexpair
 
class  UmfPackLU
 
class  UniformScaling
 
class  VectorBlock
 
class  VectorwiseOp
 
class  WithFormat
 

Typedefs

typedef AccelerateImpl< MatrixType, 0, SparseFactorizationCholeskyAtA, false > AccelerateCholeskyAtA
 
typedef AccelerateImpl< MatrixType, UpLo|Symmetric, SparseFactorizationLDLT, true > AccelerateLDLT
 
typedef AccelerateImpl< MatrixType, UpLo|Symmetric, SparseFactorizationLDLTSBK, true > AccelerateLDLTSBK
 
typedef AccelerateImpl< MatrixType, UpLo|Symmetric, SparseFactorizationLDLTTPP, true > AccelerateLDLTTPP
 
typedef AccelerateImpl< MatrixType, UpLo|Symmetric, SparseFactorizationLDLTUnpivoted, true > AccelerateLDLTUnpivoted
 
typedef AccelerateImpl< MatrixType, UpLo|Symmetric, SparseFactorizationCholesky, true > AccelerateLLT
 
typedef AccelerateImpl< MatrixType, 0, SparseFactorizationQR, false > AccelerateQR
 
typedef Transform< double, 2, AffineAffine2d
 
typedef Transform< float, 2, AffineAffine2f
 
typedef Transform< double, 3, AffineAffine3d
 
typedef Transform< float, 3, AffineAffine3f
 
typedef Transform< double, 2, AffineCompactAffineCompact2d
 
typedef Transform< float, 2, AffineCompactAffineCompact2f
 
typedef Transform< double, 3, AffineCompactAffineCompact3d
 
typedef Transform< float, 3, AffineCompactAffineCompact3f
 
typedef AlignedBox< double, 1 > AlignedBox1d
 
typedef AlignedBox< float, 1 > AlignedBox1f
 
typedef AlignedBox< int, 1 > AlignedBox1i
 
typedef AlignedBox< double, 2 > AlignedBox2d
 
typedef AlignedBox< float, 2 > AlignedBox2f
 
typedef AlignedBox< int, 2 > AlignedBox2i
 
typedef AlignedBox< double, 3 > AlignedBox3d
 
typedef AlignedBox< float, 3 > AlignedBox3f
 
typedef AlignedBox< int, 3 > AlignedBox3i
 
typedef AlignedBox< double, 4 > AlignedBox4d
 
typedef AlignedBox< float, 4 > AlignedBox4f
 
typedef AlignedBox< int, 4 > AlignedBox4i
 
typedef AlignedBox< double, DynamicAlignedBoxXd
 
typedef AlignedBox< float, DynamicAlignedBoxXf
 
typedef AlignedBox< int, DynamicAlignedBoxXi
 
typedef DiagonalMatrix< double, 2 > AlignedScaling2d
 
typedef DiagonalMatrix< float, 2 > AlignedScaling2f
 
typedef DiagonalMatrix< double, 3 > AlignedScaling3d
 
typedef DiagonalMatrix< float, 3 > AlignedScaling3f
 
typedef AngleAxis< double > AngleAxisd
 
typedef AngleAxis< float > AngleAxisf
 
typedef std::array< T, N > array
 
typedef Array< Type, 2, 1 > Array2
 
typedef Array< Type, 2, 2 > Array22
 
typedef Array< std::complex< double >, 2, 2 > Array22cd
 
typedef Array< std::complex< float >, 2, 2 > Array22cf
 
typedef Array< double, 2, 2 > Array22d
 
typedef Array< float, 2, 2 > Array22f
 
typedef Array< int, 2, 2 > Array22i
 
typedef Array< std::complex< double >, 2, 1 > Array2cd
 
typedef Array< std::complex< float >, 2, 1 > Array2cf
 
typedef Array< double, 2, 1 > Array2d
 
typedef Array< float, 2, 1 > Array2f
 
typedef Array< int, 2, 1 > Array2i
 
typedef Array< Type, 2, DynamicArray2X
 
typedef Array< std::complex< double >, 2, DynamicArray2Xcd
 
typedef Array< std::complex< float >, 2, DynamicArray2Xcf
 
typedef Array< double, 2, DynamicArray2Xd
 
typedef Array< float, 2, DynamicArray2Xf
 
typedef Array< int, 2, DynamicArray2Xi
 
typedef Array< Type, 3, 1 > Array3
 
typedef Array< Type, 3, 3 > Array33
 
typedef Array< std::complex< double >, 3, 3 > Array33cd
 
typedef Array< std::complex< float >, 3, 3 > Array33cf
 
typedef Array< double, 3, 3 > Array33d
 
typedef Array< float, 3, 3 > Array33f
 
typedef Array< int, 3, 3 > Array33i
 
typedef Array< std::complex< double >, 3, 1 > Array3cd
 
typedef Array< std::complex< float >, 3, 1 > Array3cf
 
typedef Array< double, 3, 1 > Array3d
 
typedef Array< float, 3, 1 > Array3f
 
typedef Array< int, 3, 1 > Array3i
 
typedef Array< Type, 3, DynamicArray3X
 
typedef Array< std::complex< double >, 3, DynamicArray3Xcd
 
typedef Array< std::complex< float >, 3, DynamicArray3Xcf
 
typedef Array< double, 3, DynamicArray3Xd
 
typedef Array< float, 3, DynamicArray3Xf
 
typedef Array< int, 3, DynamicArray3Xi
 
typedef Array< Type, 4, 1 > Array4
 
typedef Array< Type, 4, 4 > Array44
 
typedef Array< std::complex< double >, 4, 4 > Array44cd
 
typedef Array< std::complex< float >, 4, 4 > Array44cf
 
typedef Array< double, 4, 4 > Array44d
 
typedef Array< float, 4, 4 > Array44f
 
typedef Array< int, 4, 4 > Array44i
 
typedef Array< std::complex< double >, 4, 1 > Array4cd
 
typedef Array< std::complex< float >, 4, 1 > Array4cf
 
typedef Array< double, 4, 1 > Array4d
 
typedef Array< float, 4, 1 > Array4f
 
typedef Array< int, 4, 1 > Array4i
 
typedef Array< Type, 4, DynamicArray4X
 
typedef Array< std::complex< double >, 4, DynamicArray4Xcd
 
typedef Array< std::complex< float >, 4, DynamicArray4Xcf
 
typedef Array< double, 4, DynamicArray4Xd
 
typedef Array< float, 4, DynamicArray4Xf
 
typedef Array< int, 4, DynamicArray4Xi
 
typedef Array< Type, Dynamic, 1 > ArrayX
 
typedef Array< Type, Dynamic, 2 > ArrayX2
 
typedef Array< std::complex< double >, Dynamic, 2 > ArrayX2cd
 
typedef Array< std::complex< float >, Dynamic, 2 > ArrayX2cf
 
typedef Array< double, Dynamic, 2 > ArrayX2d
 
typedef Array< float, Dynamic, 2 > ArrayX2f
 
typedef Array< int, Dynamic, 2 > ArrayX2i
 
typedef Array< Type, Dynamic, 3 > ArrayX3
 
typedef Array< std::complex< double >, Dynamic, 3 > ArrayX3cd
 
typedef Array< std::complex< float >, Dynamic, 3 > ArrayX3cf
 
typedef Array< double, Dynamic, 3 > ArrayX3d
 
typedef Array< float, Dynamic, 3 > ArrayX3f
 
typedef Array< int, Dynamic, 3 > ArrayX3i
 
typedef Array< Type, Dynamic, 4 > ArrayX4
 
typedef Array< std::complex< double >, Dynamic, 4 > ArrayX4cd
 
typedef Array< std::complex< float >, Dynamic, 4 > ArrayX4cf
 
typedef Array< double, Dynamic, 4 > ArrayX4d
 
typedef Array< float, Dynamic, 4 > ArrayX4f
 
typedef Array< int, Dynamic, 4 > ArrayX4i
 
typedef Array< std::complex< double >, Dynamic, 1 > ArrayXcd
 
typedef Array< std::complex< float >, Dynamic, 1 > ArrayXcf
 
typedef Array< double, Dynamic, 1 > ArrayXd
 
typedef Array< float, Dynamic, 1 > ArrayXf
 
typedef Array< int, Dynamic, 1 > ArrayXi
 
typedef Array< Type, Dynamic, DynamicArrayXX
 
typedef Array< std::complex< double >, Dynamic, DynamicArrayXXcd
 
typedef Array< std::complex< float >, Dynamic, DynamicArrayXXcf
 
typedef Array< double, Dynamic, DynamicArrayXXd
 
typedef Array< float, Dynamic, DynamicArrayXXf
 
typedef Array< int, Dynamic, DynamicArrayXXi
 
typedef int BlasIndex
 
typedef std::complex< double > dcomplex
 
typedef int DefaultPermutationIndex
 
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
 
typedef EulerAngles< double, EulerSystemXYXEulerAnglesXYXd
 
typedef EulerAngles< float, EulerSystemXYXEulerAnglesXYXf
 
typedef EulerAngles< double, EulerSystemXYZEulerAnglesXYZd
 
typedef EulerAngles< float, EulerSystemXYZEulerAnglesXYZf
 
typedef EulerAngles< double, EulerSystemXZXEulerAnglesXZXd
 
typedef EulerAngles< float, EulerSystemXZXEulerAnglesXZXf
 
typedef EulerAngles< double, EulerSystemXZYEulerAnglesXZYd
 
typedef EulerAngles< float, EulerSystemXZYEulerAnglesXZYf
 
typedef EulerAngles< double, EulerSystemYXYEulerAnglesYXYd
 
typedef EulerAngles< float, EulerSystemYXYEulerAnglesYXYf
 
typedef EulerAngles< double, EulerSystemYXZEulerAnglesYXZd
 
typedef EulerAngles< float, EulerSystemYXZEulerAnglesYXZf
 
typedef EulerAngles< double, EulerSystemYZXEulerAnglesYZXd
 
typedef EulerAngles< float, EulerSystemYZXEulerAnglesYZXf
 
typedef EulerAngles< double, EulerSystemYZYEulerAnglesYZYd
 
typedef EulerAngles< float, EulerSystemYZYEulerAnglesYZYf
 
typedef EulerAngles< double, EulerSystemZXYEulerAnglesZXYd
 
typedef EulerAngles< float, EulerSystemZXYEulerAnglesZXYf
 
typedef EulerAngles< double, EulerSystemZXZEulerAnglesZXZd
 
typedef EulerAngles< float, EulerSystemZXZEulerAnglesZXZf
 
typedef EulerAngles< double, EulerSystemZYXEulerAnglesZYXd
 
typedef EulerAngles< float, EulerSystemZYXEulerAnglesZYXf
 
typedef EulerAngles< double, EulerSystemZYZEulerAnglesZYZd
 
typedef EulerAngles< float, EulerSystemZYZEulerAnglesZYZf
 
typedef EulerSystem< EULER_X, EULER_Y, EULER_XEulerSystemXYX
 
typedef EulerSystem< EULER_X, EULER_Y, EULER_ZEulerSystemXYZ
 
typedef EulerSystem< EULER_X, EULER_Z, EULER_XEulerSystemXZX
 
typedef EulerSystem< EULER_X, EULER_Z, EULER_YEulerSystemXZY
 
typedef EulerSystem< EULER_Y, EULER_X, EULER_YEulerSystemYXY
 
typedef EulerSystem< EULER_Y, EULER_X, EULER_ZEulerSystemYXZ
 
typedef EulerSystem< EULER_Y, EULER_Z, EULER_XEulerSystemYZX
 
typedef EulerSystem< EULER_Y, EULER_Z, EULER_YEulerSystemYZY
 
typedef EulerSystem< EULER_Z, EULER_X, EULER_YEulerSystemZXY
 
typedef EulerSystem< EULER_Z, EULER_X, EULER_ZEulerSystemZXZ
 
typedef EulerSystem< EULER_Z, EULER_Y, EULER_XEulerSystemZYX
 
typedef EulerSystem< EULER_Z, EULER_Y, EULER_ZEulerSystemZYZ
 
typedef std::enable_if_t< !internal::is_arithmetic< typename NumTraits< Derived >::Real >::value &&internal::is_arithmetic< typename NumTraits< ScalarExponent >::Real >::value, CwiseUnaryOp< internal::scalar_unary_pow_op< typename Derived::Scalar, ScalarExponent >, const Derived > > GlobalUnaryPowReturnType
 
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
 
typedef Transform< double, 2, IsometryIsometry2d
 
typedef Transform< float, 2, IsometryIsometry2f
 
typedef Transform< double, 3, IsometryIsometry3d
 
typedef Transform< float, 3, IsometryIsometry3f
 
typedef Matrix< Type, 2, 2 > Matrix2
 
typedef Matrix< std::complex< double >, 2, 2 > Matrix2cd
 
typedef Matrix< std::complex< float >, 2, 2 > Matrix2cf
 
typedef Matrix< double, 2, 2 > Matrix2d
 
typedef Matrix< float, 2, 2 > Matrix2f
 
typedef Matrix< int, 2, 2 > Matrix2i
 
typedef Matrix< Type, 2, DynamicMatrix2X
 
typedef Matrix< std::complex< double >, 2, DynamicMatrix2Xcd
 
typedef Matrix< std::complex< float >, 2, DynamicMatrix2Xcf
 
typedef Matrix< double, 2, DynamicMatrix2Xd
 
typedef Matrix< float, 2, DynamicMatrix2Xf
 
typedef Matrix< int, 2, DynamicMatrix2Xi
 
typedef Matrix< Type, 3, 3 > Matrix3
 
typedef Matrix< std::complex< double >, 3, 3 > Matrix3cd
 
typedef Matrix< std::complex< float >, 3, 3 > Matrix3cf
 
typedef Matrix< double, 3, 3 > Matrix3d
 
typedef Matrix< float, 3, 3 > Matrix3f
 
typedef Matrix< int, 3, 3 > Matrix3i
 
typedef Matrix< Type, 3, DynamicMatrix3X
 
typedef Matrix< std::complex< double >, 3, DynamicMatrix3Xcd
 
typedef Matrix< std::complex< float >, 3, DynamicMatrix3Xcf
 
typedef Matrix< double, 3, DynamicMatrix3Xd
 
typedef Matrix< float, 3, DynamicMatrix3Xf
 
typedef Matrix< int, 3, DynamicMatrix3Xi
 
typedef Matrix< Type, 4, 4 > Matrix4
 
typedef Matrix< std::complex< double >, 4, 4 > Matrix4cd
 
typedef Matrix< std::complex< float >, 4, 4 > Matrix4cf
 
typedef Matrix< double, 4, 4 > Matrix4d
 
typedef Matrix< float, 4, 4 > Matrix4f
 
typedef Matrix< int, 4, 4 > Matrix4i
 
typedef Matrix< Type, 4, DynamicMatrix4X
 
typedef Matrix< std::complex< double >, 4, DynamicMatrix4Xcd
 
typedef Matrix< std::complex< float >, 4, DynamicMatrix4Xcf
 
typedef Matrix< double, 4, DynamicMatrix4Xd
 
typedef Matrix< float, 4, DynamicMatrix4Xf
 
typedef Matrix< int, 4, DynamicMatrix4Xi
 
typedef Matrix< Type, Dynamic, DynamicMatrixX
 
typedef Matrix< Type, Dynamic, 2 > MatrixX2
 
typedef Matrix< std::complex< double >, Dynamic, 2 > MatrixX2cd
 
typedef Matrix< std::complex< float >, Dynamic, 2 > MatrixX2cf
 
typedef Matrix< double, Dynamic, 2 > MatrixX2d
 
typedef Matrix< float, Dynamic, 2 > MatrixX2f
 
typedef Matrix< int, Dynamic, 2 > MatrixX2i
 
typedef Matrix< Type, Dynamic, 3 > MatrixX3
 
typedef Matrix< std::complex< double >, Dynamic, 3 > MatrixX3cd
 
typedef Matrix< std::complex< float >, Dynamic, 3 > MatrixX3cf
 
typedef Matrix< double, Dynamic, 3 > MatrixX3d
 
typedef Matrix< float, Dynamic, 3 > MatrixX3f
 
typedef Matrix< int, Dynamic, 3 > MatrixX3i
 
typedef Matrix< Type, Dynamic, 4 > MatrixX4
 
typedef Matrix< std::complex< double >, Dynamic, 4 > MatrixX4cd
 
typedef Matrix< std::complex< float >, Dynamic, 4 > MatrixX4cf
 
typedef Matrix< double, Dynamic, 4 > MatrixX4d
 
typedef Matrix< float, Dynamic, 4 > MatrixX4f
 
typedef Matrix< int, Dynamic, 4 > MatrixX4i
 
typedef Matrix< std::complex< double >, Dynamic, DynamicMatrixXcd
 
typedef Matrix< std::complex< float >, Dynamic, DynamicMatrixXcf
 
typedef Matrix< double, Dynamic, DynamicMatrixXd
 
typedef Matrix< float, Dynamic, DynamicMatrixXf
 
typedef Matrix< int, Dynamic, DynamicMatrixXi
 
typedef Transform< double, 2, ProjectiveProjective2d
 
typedef Transform< float, 2, ProjectiveProjective2f
 
typedef Transform< double, 3, ProjectiveProjective3d
 
typedef Transform< float, 3, ProjectiveProjective3f
 
typedef Quaternion< double > Quaterniond
 
typedef Quaternion< float > Quaternionf
 
typedef Map< Quaternion< double >, AlignedQuaternionMapAlignedd
 
typedef Map< Quaternion< float >, AlignedQuaternionMapAlignedf
 
typedef Map< Quaternion< double >, 0 > QuaternionMapd
 
typedef Map< Quaternion< float >, 0 > QuaternionMapf
 
typedef Rotation2D< double > Rotation2Dd
 
typedef Rotation2D< float > Rotation2Df
 
typedef Matrix< Type, 1, Size > RowVector
 
typedef Matrix< Type, 1, 2 > RowVector2
 
typedef Matrix< std::complex< double >, 1, 2 > RowVector2cd
 
typedef Matrix< std::complex< float >, 1, 2 > RowVector2cf
 
typedef Matrix< double, 1, 2 > RowVector2d
 
typedef Matrix< float, 1, 2 > RowVector2f
 
typedef Matrix< int, 1, 2 > RowVector2i
 
typedef Matrix< Type, 1, 3 > RowVector3
 
typedef Matrix< std::complex< double >, 1, 3 > RowVector3cd
 
typedef Matrix< std::complex< float >, 1, 3 > RowVector3cf
 
typedef Matrix< double, 1, 3 > RowVector3d
 
typedef Matrix< float, 1, 3 > RowVector3f
 
typedef Matrix< int, 1, 3 > RowVector3i
 
typedef Matrix< Type, 1, 4 > RowVector4
 
typedef Matrix< std::complex< double >, 1, 4 > RowVector4cd
 
typedef Matrix< std::complex< float >, 1, 4 > RowVector4cf
 
typedef Matrix< double, 1, 4 > RowVector4d
 
typedef Matrix< float, 1, 4 > RowVector4f
 
typedef Matrix< int, 1, 4 > RowVector4i
 
typedef Matrix< Type, 1, DynamicRowVectorX
 
typedef Matrix< std::complex< double >, 1, DynamicRowVectorXcd
 
typedef Matrix< std::complex< float >, 1, DynamicRowVectorXcf
 
typedef Matrix< double, 1, DynamicRowVectorXd
 
typedef Matrix< float, 1, DynamicRowVectorXf
 
typedef Matrix< int, 1, DynamicRowVectorXi
 
typedef std::complex< float > scomplex
 
typedef Spline< double, 2 > Spline2d
 2D double B-spline with dynamic degree. More...
 
typedef Spline< float, 2 > Spline2f
 2D float B-spline with dynamic degree. More...
 
typedef Spline< double, 3 > Spline3d
 3D double B-spline with dynamic degree. More...
 
typedef Spline< float, 3 > Spline3f
 3D float B-spline with dynamic degree. More...
 
typedef ThreadPoolTempl< StlThreadEnvironmentThreadPool
 
typedef Translation< double, 2 > Translation2d
 
typedef Translation< float, 2 > Translation2f
 
typedef Translation< double, 3 > Translation3d
 
typedef Translation< float, 3 > Translation3f
 
typedef Matrix< Type, Size, 1 > Vector
 
typedef Matrix< Type, 2, 1 > Vector2
 
typedef Matrix< std::complex< double >, 2, 1 > Vector2cd
 
typedef Matrix< std::complex< float >, 2, 1 > Vector2cf
 
typedef Matrix< double, 2, 1 > Vector2d
 
typedef Matrix< float, 2, 1 > Vector2f
 
typedef Matrix< int, 2, 1 > Vector2i
 
typedef Matrix< Type, 3, 1 > Vector3
 
typedef Matrix< std::complex< double >, 3, 1 > Vector3cd
 
typedef Matrix< std::complex< float >, 3, 1 > Vector3cf
 
typedef Matrix< double, 3, 1 > Vector3d
 
typedef Matrix< float, 3, 1 > Vector3f
 
typedef Matrix< int, 3, 1 > Vector3i
 
typedef Matrix< Type, 4, 1 > Vector4
 
typedef Matrix< std::complex< double >, 4, 1 > Vector4cd
 
typedef Matrix< std::complex< float >, 4, 1 > Vector4cf
 
typedef Matrix< double, 4, 1 > Vector4d
 
typedef Matrix< float, 4, 1 > Vector4f
 
typedef Matrix< int, 4, 1 > Vector4i
 
typedef Matrix< Type, Dynamic, 1 > VectorX
 
typedef Matrix< std::complex< double >, Dynamic, 1 > VectorXcd
 
typedef Matrix< std::complex< float >, Dynamic, 1 > VectorXcf
 
typedef Matrix< double, Dynamic, 1 > VectorXd
 
typedef Matrix< float, Dynamic, 1 > VectorXf
 
typedef Matrix< int, Dynamic, 1 > VectorXi
 

Enumerations

enum  {
  NegationFlag ,
  ConjugationFlag
}
 
enum  {
  GlobalRealFlag ,
  GlobalImagFlag ,
  GlobalZeroFlag
}
 
enum  { IsSkyline }
 
enum  {
  SPD ,
  NonSymmetric
}
 
enum  AccessorLevels
 
enum  Action
 
enum  AdditionalProductEvaluationMode {
  SkylineTimeDenseProduct ,
  SkylineTimeSkylineProduct ,
  DenseTimeSkylineProduct
}
 
enum  AlignmentType
 
enum  AmbiVectorMode
 
enum  AutoSize_t
 
enum  CholmodMode
 
enum  ComputationInfo
 
enum class  convolution_type {
  CONV1D ,
  CONV2D ,
  CONV3D
}
 
enum  DecompositionOptions
 
enum  Default_t
 
enum  DirectionType
 
enum  EulerAxis {
  EULER_X ,
  EULER_Y ,
  EULER_Z
}
 Representation of a fixed signed rotation axis for EulerSystem. More...
 
enum  FFTDirection {
  FFT_FORWARD ,
  FFT_REVERSE
}
 
enum  FFTResultType {
  RealPart ,
  ImagPart ,
  BothParts
}
 
enum  NaNPropagationOptions
 
enum  NoChange_t
 
enum  NumericalDiffMode {
  Forward ,
  Central
}
 
enum  PaddingType {
  PADDING_VALID ,
  PADDING_SAME
}
 
enum  ProductImplType
 
enum  QRPreconditioners
 
enum  Sequential_t
 
enum  SideType
 
enum  SimplicialCholeskyMode
 
enum  SpecializedType
 
enum  StorageOptions
 
enum  TransformTraits
 
enum  TraversalType
 
enum  UnrollingType
 
enum  UpLoType
 

Functions

const Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs_op< typename Derived::Scalar >, const Derived > abs (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > abs (const Eigen::AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs2_op< typename Derived::Scalar >, const Derived > abs2 (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > abs2 (const Eigen::AutoDiffScalar< DerType > &x)
 
template<typename Derived , typename OtherDerived >
Derived::Scalar accurateDot (const SparseMatrixBase< Derived > &A, const SparseMatrixBase< OtherDerived > &other)
 computes an accurate dot product on two sparse vectors More...
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_acos_op< typename Derived::Scalar >, const Derived > acos (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > acos (const Eigen::AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_acosh_op< typename Derived::Scalar >, const Derived > acosh (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_arg_op< typename Derived::Scalar >, const Derived > arg (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_asin_op< typename Derived::Scalar >, const Derived > asin (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > asin (const Eigen::AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_asinh_op< typename Derived::Scalar >, const Derived > asinh (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_atan_op< typename Derived::Scalar >, const Derived > atan (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerTypeA , typename DerTypeB >
AutoDiffScalar< Matrix< typename internal::traits< internal::remove_all_t< DerTypeA > >::Scalar, Dynamic, 1 > > atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_atanh_op< typename Derived::Scalar >, const Derived > atanh (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0_op< typename Derived::Scalar >, const Derived > bessel_i0 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0e_op< typename Derived::Scalar >, const Derived > bessel_i0e (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1_op< typename Derived::Scalar >, const Derived > bessel_i1 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1e_op< typename Derived::Scalar >, const Derived > bessel_i1e (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j0_op< typename Derived::Scalar >, const Derived > bessel_j0 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j1_op< typename Derived::Scalar >, const Derived > bessel_j1 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0_op< typename Derived::Scalar >, const Derived > bessel_k0 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0e_op< typename Derived::Scalar >, const Derived > bessel_k0e (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1_op< typename Derived::Scalar >, const Derived > bessel_k1 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1e_op< typename Derived::Scalar >, const Derived > bessel_k1e (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y0_op< typename Derived::Scalar >, const Derived > bessel_y0 (const Eigen::ArrayBase< Derived > &x)
 
template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y1_op< typename Derived::Scalar >, const Derived > bessel_y1 (const Eigen::ArrayBase< Derived > &x)
 
template<typename ADerived , typename BDerived , typename XDerived >
const TensorCwiseTernaryOp< internal::scalar_betainc_op< typename XDerived::Scalar >, const ADerived, const BDerived, const XDerived > betainc (const ADerived &a, const BDerived &b, const XDerived &x)
 
template<typename ArgADerived , typename ArgBDerived , typename ArgXDerived >
const Eigen::CwiseTernaryOp< Eigen::internal::scalar_betainc_op< typename ArgXDerived::Scalar >, const ArgADerived, const ArgBDerived, const ArgXDerived > betainc (const Eigen::ArrayBase< ArgADerived > &a, const Eigen::ArrayBase< ArgBDerived > &b, const Eigen::ArrayBase< ArgXDerived > &x)
 
Box2d bounding_box (const Vector2d &v)
 
template<typename BVH , typename Intersector >
void BVIntersect (const BVH &tree, Intersector &intersector)
 
template<typename BVH1 , typename BVH2 , typename Intersector >
void BVIntersect (const BVH1 &tree1, const BVH2 &tree2, Intersector &intersector)
 
template<typename BVH , typename Minimizer >
Minimizer::Scalar BVMinimize (const BVH &tree, Minimizer &minimizer)
 
template<typename BVH1 , typename BVH2 , typename Minimizer >
Minimizer::Scalar BVMinimize (const BVH1 &tree1, const BVH2 &tree2, Minimizer &minimizer)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_carg_op< typename Derived::Scalar >, const Derived > carg (const Eigen::ArrayBase< Derived > &x)
 
template<typename Polynomial >
NumTraits< typename Polynomial::Scalar >::Real cauchy_max_bound (const Polynomial &poly)
 
template<typename Polynomial >
NumTraits< typename Polynomial::Scalar >::Real cauchy_min_bound (const Polynomial &poly)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_ceil_op< typename Derived::Scalar >, const Derived > ceil (const Eigen::ArrayBase< Derived > &x)
 
template<typename T1 , typename T2 >
EIGEN_ALWAYS_INLINE const T2 & choose (Cond< false >, const T1 &, const T2 &second)
 
template<typename T1 , typename T2 >
EIGEN_ALWAYS_INLINE const T1 & choose (Cond< true >, const T1 &first, const T2 &)
 
template<typename PointArrayType , typename KnotVectorType >
void ChordLengths (const PointArrayType &pts, KnotVectorType &chord_lengths)
 Computes chord length parameters which are required for spline interpolation. More...
 
template<typename DerType >
const AutoDiffScalar< DerType > & conj (const AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_conjugate_op< typename Derived::Scalar >, const Derived > conj (const Eigen::ArrayBase< Derived > &x)
 
template<typename T >
TconstCast (const T *data)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_cos_op< typename Derived::Scalar >, const Derived > cos (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > cos (const Eigen::AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_cosh_op< typename Derived::Scalar >, const Derived > cosh (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > cosh (const Eigen::AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_cube_op< typename Derived::Scalar >, const Derived > cube (const Eigen::ArrayBase< Derived > &x)
 
template<typename SplineType , typename DerivativeType >
void derivativesImpl (const SplineType &spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType &der)
 
const uint8_tdeserialize (const uint8_t *src, const uint8_t *end, Args &... args)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_digamma_op< typename Derived::Scalar >, const Derived > digamma (const Eigen::ArrayBase< Derived > &x)
 
template<typename Dims1 , typename Dims2 >
EIGEN_ALWAYS_INLINE bool dimensions_match (Dims1 dims1, Dims2 dims2)
 
template<typename T >
EIGEN_ALWAYS_INLINE T divup (const T x, const T y)
 
template<typename T , typename X , typename Y >
EIGEN_ALWAYS_INLINE T divup (const X x, const Y y)
 
void dsaupd_ (int *ido, char *bmat, int *n, char *which, int *nev, double *tol, double *resid, int *ncv, double *v, int *ldv, int *iparam, int *ipntr, double *workd, double *workl, int *lworkl, int *info)
 
void dseupd_ (int *rvec, char *All, int *select, double *d, double *z, int *ldz, double *sigma, char *bmat, int *n, char *which, int *nev, double *tol, double *resid, int *ncv, double *v, int *ldv, int *iparam, int *ipntr, double *workd, double *workl, int *lworkl, int *ierr)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_erf_op< typename Derived::Scalar >, const Derived > erf (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_erfc_op< typename Derived::Scalar >, const Derived > erfc (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_exp_op< typename Derived::Scalar >, const Derived > exp (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > exp (const Eigen::AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_expm1_op< typename Derived::Scalar >, const Derived > expm1 (const Eigen::ArrayBase< Derived > &x)
 
static const auto fix ()
 
static const auto fix (int val)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_floor_op< typename Derived::Scalar >, const Derived > floor (const Eigen::ArrayBase< Derived > &x)
 
template<typename AlphaDerived , typename SampleDerived >
const Eigen::CwiseBinaryOp< Eigen::internal::scalar_gamma_sample_der_alpha_op< typename AlphaDerived::Scalar >, const AlphaDerived, const SampleDerived > gamma_sample_der_alpha (const Eigen::ArrayBase< AlphaDerived > &alpha, const Eigen::ArrayBase< SampleDerived > &sample)
 
bool getMarketHeader (const std::string &filename, int &sym, bool &iscomplex, bool &isdense)
 Reads the header of a matrixmarket file and determines the properties of a matrix. More...
 
template<typename Scalar >
void glLoadMatrix (const Transform< Scalar, 3, Affine > &t)
 
template<typename Scalar >
void glLoadMatrix (const Transform< Scalar, 3, AffineCompact > &t)
 
template<typename Scalar >
void glLoadMatrix (const Transform< Scalar, 3, Projective > &t)
 
template<typename Scalar >
void glMultMatrix (const Transform< Scalar, 3, Affine > &t)
 
template<typename Scalar >
void glMultMatrix (const Transform< Scalar, 3, AffineCompact > &t)
 
template<typename Scalar >
void glMultMatrix (const Transform< Scalar, 3, Projective > &t)
 
void glRotate (const Rotation2D< double > &rot)
 
void glRotate (const Rotation2D< float > &rot)
 
template<typename Derived >
void glRotate (const RotationBase< Derived, 3 > &rot)
 
template<typename Scalar >
void glScale (const UniformScaling< Scalar > &s)
 
void glScale2dv (const double *v)
 
void glScale2fv (const float *v)
 
void glScale3dv (const double *v)
 
void glScale3fv (const float *v)
 
template<typename Scalar >
void glTranslate (const Translation< Scalar, 2 > &t)
 
template<typename Scalar >
void glTranslate (const Translation< Scalar, 3 > &t)
 
void glTranslate2dv (const double *v)
 
void glTranslate2fv (const float *v)
 
void glTranslate3dv (const double *v)
 
void glTranslate3fv (const float *v)
 
HouseholderSequence< VectorsType, CoeffsType > householderSequence (const VectorsType &v, const CoeffsType &h)
 
template<typename Derived , typename ExponentDerived >
const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igamma_op< typename Derived::Scalar >, const Derived, const ExponentDerived > igamma (const Eigen::ArrayBase< Derived > &a, const Eigen::ArrayBase< ExponentDerived > &x)
 
template<typename Derived , typename ExponentDerived >
const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igamma_der_a_op< typename Derived::Scalar >, const Derived, const ExponentDerived > igamma_der_a (const Eigen::ArrayBase< Derived > &a, const Eigen::ArrayBase< ExponentDerived > &x)
 
template<typename Derived , typename ExponentDerived >
const Eigen::CwiseBinaryOp< Eigen::internal::scalar_igammac_op< typename Derived::Scalar >, const Derived, const ExponentDerived > igammac (const Eigen::ArrayBase< Derived > &a, const Eigen::ArrayBase< ExponentDerived > &x)
 
template<typename DerType >
DerType::Scalar imag (const AutoDiffScalar< DerType > &)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_imag_op< typename Derived::Scalar >, const Derived > imag (const Eigen::ArrayBase< Derived > &x)
 
void initParallel ()
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_inverse_op< typename Derived::Scalar >, const Derived > inverse (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_isfinite_op< typename Derived::Scalar >, const Derived > isfinite (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_isinf_op< typename Derived::Scalar >, const Derived > isinf (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_isnan_op< typename Derived::Scalar >, const Derived > isnan (const Eigen::ArrayBase< Derived > &x)
 
klu_numeric * klu_factor (int Ap[], int Ai[], double Ax[], klu_symbolic *Symbolic, klu_common *Common, double)
 
klu_numeric * klu_factor (int Ap[], int Ai[], std::complex< double > Ax[], klu_symbolic *Symbolic, klu_common *Common, std::complex< double >)
 
int klu_solve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], klu_common *Common, double)
 
int klu_solve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex< double >B[], klu_common *Common, std::complex< double >)
 
int klu_tsolve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], klu_common *Common, double)
 
int klu_tsolve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex< double >B[], klu_common *Common, std::complex< double >)
 
template<typename KnotVectorType >
void KnotAveraging (const KnotVectorType &parameters, DenseIndex degree, KnotVectorType &knots)
 Computes knot averages. More...
 
template<typename KnotVectorType , typename ParameterVectorType , typename IndexArray >
void KnotAveragingWithDerivatives (const ParameterVectorType &parameters, const unsigned int degree, const IndexArray &derivativeIndices, KnotVectorType &knots)
 Computes knot averages when derivative constraints are present. Note that this is a technical interpretation of the referenced article since the algorithm contained therein is incorrect as written. More...
 
template<typename A , typename B >
KroneckerProductSparse< A, BkroneckerProduct (const EigenBase< A > &a, const EigenBase< B > &b)
 
template<typename A , typename B >
KroneckerProduct< A, BkroneckerProduct (const MatrixBase< A > &a, const MatrixBase< B > &b)
 
std::ptrdiff_t l1CacheSize ()
 
std::ptrdiff_t l2CacheSize ()
 
std::ptrdiff_t l3CacheSize ()
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_lgamma_op< typename Derived::Scalar >, const Derived > lgamma (const Eigen::ArrayBase< Derived > &x)
 
template<typename SparseMatrixType >
bool loadMarket (SparseMatrixType &mat, const std::string &filename)
 Loads a sparse matrix from a matrixmarket format file. More...
 
template<typename DenseType >
bool loadMarketDense (DenseType &mat, const std::string &filename)
 Loads a dense Matrix or Vector from a matrixmarket file. If a statically sized matrix has to be parsed and the file contains the wrong dimensions it is undefined behaviour. More...
 
template<typename VectorType >
bool loadMarketVector (VectorType &vec, const std::string &filename)
 Same functionality as loadMarketDense, deprecated. More...
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_log_op< typename Derived::Scalar >, const Derived > log (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > log (const Eigen::AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_log10_op< typename Derived::Scalar >, const Derived > log10 (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_log1p_op< typename Derived::Scalar >, const Derived > log1p (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_log2_op< typename Derived::Scalar >, const Derived > log2 (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_logistic_op< typename Derived::Scalar >, const Derived > logistic (const Eigen::ArrayBase< Derived > &x)
 
template<typename FirstType , typename... OtherTypes>
constexpr IndexList< FirstType, OtherTypes... > make_index_list (FirstType val1, OtherTypes... other_vals)
 
template<typename NewDerType >
AutoDiffScalar< NewDerType > MakeAutoDiffScalar (const typename NewDerType::Scalar &value, const NewDerType &der)
 
template<typename MatrixType , typename ResultType >
void matrix_sqrt_quasi_triangular (const MatrixType &arg, ResultType &result)
 Compute matrix square root of quasi-triangular matrix. More...
 
template<typename MatrixType , typename ResultType >
void matrix_sqrt_triangular (const MatrixType &arg, ResultType &result)
 Compute matrix square root of triangular matrix. More...
 
template<typename DerType >
CleanedUpDerType< DerType >::type() max (const AutoDiffScalar< DerType > &x, const AutoDiffScalar< DerType > &y)
 
template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() max (const AutoDiffScalar< DerType > &x, const T &y)
 
template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() max (const T &x, const AutoDiffScalar< DerType > &y)
 
template<typename DerType >
CleanedUpDerType< DerType >::type() min (const AutoDiffScalar< DerType > &x, const AutoDiffScalar< DerType > &y)
 
template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() min (const AutoDiffScalar< DerType > &x, const T &y)
 
template<typename DerType , typename T >
CleanedUpDerType< DerType >::type() min (const T &x, const AutoDiffScalar< DerType > &y)
 
int nbThreads ()
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_ndtri_op< typename Derived::Scalar >, const Derived > ndtri (const Eigen::ArrayBase< Derived > &x)
 
template<typename U , typename V >
EIGEN_CONSTEXPR bool operator!= (const Pair< U, V > &x, const Pair< U, V > &y)
 
const Product< Inverse< PermutationType >, SparseDerived, AliasFreeProductoperator* (const InverseImpl< PermutationType, PermutationStorage > &tperm, const SparseMatrixBase< SparseDerived > &matrix)
 
const Product< MatrixDerived, PermutationDerived, AliasFreeProductoperator* (const MatrixBase< MatrixDerived > &matrix, const PermutationBase< PermutationDerived > &permutation)
 
const Product< MatrixDerived, TranspositionsDerived, AliasFreeProductoperator* (const MatrixBase< MatrixDerived > &matrix, const TranspositionsBase< TranspositionsDerived > &transpositions)
 
internal::matrix_type_times_scalar_type< typename VectorsType::Scalar, OtherDerived >::Type operator* (const MatrixBase< OtherDerived > &other, const HouseholderSequence< VectorsType, CoeffsType, Side > &h)
 
const Product< PermDerived, SparseDerived, AliasFreeProductoperator* (const PermutationBase< PermDerived > &perm, const SparseMatrixBase< SparseDerived > &matrix)
 
const Product< PermutationDerived, MatrixDerived, AliasFreeProductoperator* (const PermutationBase< PermutationDerived > &permutation, const MatrixBase< MatrixDerived > &matrix)
 
const Product< SparseDerived, Inverse< PermutationType >, AliasFreeProductoperator* (const SparseMatrixBase< SparseDerived > &matrix, const InverseImpl< PermutationType, PermutationStorage > &tperm)
 
const Product< SparseDerived, PermDerived, AliasFreeProductoperator* (const SparseMatrixBase< SparseDerived > &matrix, const PermutationBase< PermDerived > &perm)
 
const Product< TranspositionsDerived, MatrixDerived, AliasFreeProductoperator* (const TranspositionsBase< TranspositionsDerived > &transpositions, const MatrixBase< MatrixDerived > &matrix)
 
const CwiseBinaryOp< internal::scalar_sum_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > operator+ (const MatrixBase< DenseDerived > &a, const SparseMatrixBase< SparseDerived > &b)
 
const CwiseBinaryOp< internal::scalar_sum_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > operator+ (const SparseMatrixBase< SparseDerived > &a, const MatrixBase< DenseDerived > &b)
 
const CwiseBinaryOp< internal::scalar_difference_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerived > operator- (const MatrixBase< DenseDerived > &a, const SparseMatrixBase< SparseDerived > &b)
 
const CwiseBinaryOp< internal::scalar_difference_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerived > operator- (const SparseMatrixBase< SparseDerived > &a, const MatrixBase< DenseDerived > &b)
 
template<typename IndexType , int NumDims>
std::ostream & operator<< (std::ostream &os, const DSizes< IndexType, NumDims > &dims)
 
template<typename FirstType , typename... OtherTypes>
std::ostream & operator<< (std::ostream &os, const IndexList< FirstType, OtherTypes... > &dims)
 
std::ostream & operator<< (std::ostream &s, const DiagonalBase< Derived > &m)
 
template<typename T >
std::ostream & operator<< (std::ostream &s, const TensorBase< T, ReadOnlyAccessors > &t)
 
template<typename U , typename V >
EIGEN_CONSTEXPR bool operator== (const Pair< U, V > &x, const Pair< U, V > &y)
 
template<typename Polynomials , typename T >
T poly_eval (const Polynomials &poly, const T &x)
 
template<typename Polynomials , typename T >
T poly_eval_horner (const Polynomials &poly, const T &x)
 
template<typename DerivedN , typename DerivedX >
const Eigen::CwiseBinaryOp< Eigen::internal::scalar_polygamma_op< typename DerivedX::Scalar >, const DerivedN, const DerivedX > polygamma (const Eigen::ArrayBase< DerivedN > &n, const Eigen::ArrayBase< DerivedX > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(internal::remove_all_t< DerType >, typename internal::traits< internal::remove_all_t< DerType >>::Scalar, product) > pow (const Eigen::AutoDiffScalar< DerType > &x, const typename internal::traits< internal::remove_all_t< DerType >>::Scalar &y)
 
template<typename DerType >
const AutoDiffScalar< DerType > & real (const AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_real_op< typename Derived::Scalar >, const Derived > real (const Eigen::ArrayBase< Derived > &x)
 
HouseholderSequence< VectorsType, CoeffsType, OnTheRightrightHouseholderSequence (const VectorsType &v, const CoeffsType &h)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_rint_op< typename Derived::Scalar >, const Derived > rint (const Eigen::ArrayBase< Derived > &x)
 
template<typename RootVector , typename Polynomial >
void roots_to_monicPolynomial (const RootVector &rv, Polynomial &poly)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_round_op< typename Derived::Scalar >, const Derived > round (const Eigen::ArrayBase< Derived > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_rsqrt_op< typename Derived::Scalar >, const Derived > rsqrt (const Eigen::ArrayBase< Derived > &x)
 
template<typename SparseMatrixType >
bool saveMarket (const SparseMatrixType &mat, const std::string &filename, int sym=0)
 writes a sparse Matrix to a marketmarket format file More...
 
template<typename DenseType >
bool saveMarketDense (const DenseType &mat, const std::string &filename)
 writes a dense Matrix or vector to a marketmarket format file More...
 
template<typename VectorType >
bool saveMarketVector (const VectorType &vec, const std::string &filename)
 Same functionality as saveMarketDense, deprecated. More...
 
const DiagonalWrapper< const Derived > Scaling (const MatrixBase< Derived > &coeffs)
 
DiagonalMatrix< Scalar, 2 > Scaling (const Scalar &sx, const Scalar &sy)
 
DiagonalMatrix< Scalar, 3 > Scaling (const Scalar &sx, const Scalar &sy, const Scalar &sz)
 
UniformScaling< std::complex< RealScalar > > Scaling (const std::complex< RealScalar > &s)
 
UniformScaling< double > Scaling (double s)
 
UniformScaling< float > Scaling (float s)
 
DiagonalWrapper< const Derived >::PlainObject Scaling (MatrixBase< Derived > &&coeffs)
 
auto seq (FirstType f, LastType l)
 
auto seq (FirstType f, LastType l, IncrType incr)
 
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type > seqN (FirstType first, SizeType size)
 
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type, typename internal::cleanup_seq_incr< IncrType >::type > seqN (FirstType first, SizeType size, IncrType incr)
 
uint8_tserialize (uint8_t *dest, uint8_t *end, const Args &... args)
 
size_t serialize_size (const Args &... args)
 
void setCpuCacheSizes (std::ptrdiff_t l1, std::ptrdiff_t l2, std::ptrdiff_t l3)
 
void setNbThreads (int v)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sign_op< typename Derived::Scalar >, const Derived > sign (const Eigen::ArrayBase< Derived > &x)
 
static const char * SimdInstructionSetsInUse (void)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sin_op< typename Derived::Scalar >, const Derived > sin (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > sin (const Eigen::AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sinh_op< typename Derived::Scalar >, const Derived > sinh (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > sinh (const Eigen::AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived > sqrt (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > sqrt (const Eigen::AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_square_op< typename Derived::Scalar >, const Derived > square (const Eigen::ArrayBase< Derived > &x)
 
void ssaupd_ (int *ido, char *bmat, int *n, char *which, int *nev, float *tol, float *resid, int *ncv, float *v, int *ldv, int *iparam, int *ipntr, float *workd, float *workl, int *lworkl, int *info)
 
void sseupd_ (int *rvec, char *All, int *select, float *d, float *z, int *ldz, float *sigma, char *bmat, int *n, char *which, int *nev, float *tol, float *resid, int *ncv, float *v, int *ldv, int *iparam, int *ipntr, float *workd, float *workl, int *lworkl, int *ierr)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_tan_op< typename Derived::Scalar >, const Derived > tan (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > tan (const Eigen::AutoDiffScalar< DerType > &x)
 
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_tanh_op< typename Derived::Scalar >, const Derived > tanh (const Eigen::ArrayBase< Derived > &x)
 
template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t< DerType >, typename Eigen::internal::traits< Eigen::internal::remove_all_t< DerType >>::Scalar, product) > tanh (const Eigen::AutoDiffScalar< DerType > &x)
 
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], double, int)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], double, SuiteSparse_long)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], std::complex< double >, int)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], std::complex< double >, SuiteSparse_long)
 
void umfpack_free_numeric (void **Numeric, double, int)
 
void umfpack_free_numeric (void **Numeric, double, SuiteSparse_long)
 
void umfpack_free_numeric (void **Numeric, std::complex< double >, int)
 
void umfpack_free_numeric (void **Numeric, std::complex< double >, SuiteSparse_long)
 
void umfpack_free_symbolic (void **Symbolic, double, int)
 
void umfpack_free_symbolic (void **Symbolic, double, SuiteSparse_long)
 
void umfpack_free_symbolic (void **Symbolic, std::complex< double >, int)
 
void umfpack_free_symbolic (void **Symbolic, std::complex< double >, SuiteSparse_long)
 
int umfpack_get_determinant (double *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], int)
 
SuiteSparse_long umfpack_get_determinant (double *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], SuiteSparse_long)
 
int umfpack_get_determinant (std::complex< double > *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], int)
 
SuiteSparse_long umfpack_get_determinant (std::complex< double > *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], SuiteSparse_long)
 
int umfpack_get_lunz (int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
 
int umfpack_get_lunz (int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex< double >)
 
SuiteSparse_long umfpack_get_lunz (SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric, double)
 
SuiteSparse_long umfpack_get_lunz (SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric, std::complex< double >)
 
int umfpack_get_numeric (int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
 
int umfpack_get_numeric (int Lp[], int Lj[], std::complex< double > Lx[], int Up[], int Ui[], std::complex< double > Ux[], int P[], int Q[], std::complex< double > Dx[], int *do_recip, double Rs[], void *Numeric)
 
SuiteSparse_long umfpack_get_numeric (SuiteSparse_long Lp[], SuiteSparse_long Lj[], double Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], double Ux[], SuiteSparse_long P[], SuiteSparse_long Q[], double Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric)
 
SuiteSparse_long umfpack_get_numeric (SuiteSparse_long Lp[], SuiteSparse_long Lj[], std::complex< double > Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], std::complex< double > Ux[], SuiteSparse_long P[], SuiteSparse_long Q[], std::complex< double > Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric)
 
int umfpack_numeric (const int Ap[], const int Ai[], const double Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_numeric (const int Ap[], const int Ai[], const std::complex< double > Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_numeric (const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_numeric (const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
void umfpack_report_control (double control[UMFPACK_CONTROL], double, int)
 
void umfpack_report_control (double control[UMFPACK_CONTROL], double, SuiteSparse_long)
 
void umfpack_report_control (double control[UMFPACK_CONTROL], std::complex< double >, int)
 
void umfpack_report_control (double control[UMFPACK_CONTROL], std::complex< double >, SuiteSparse_long)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, int)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, SuiteSparse_long)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex< double >, int)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex< double >, SuiteSparse_long)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, double, int)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, double, SuiteSparse_long)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, std::complex< double >, int)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, std::complex< double >, SuiteSparse_long)
 
int umfpack_solve (int sys, const int Ap[], const int Ai[], const double Ax[], double X[], const double B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_solve (int sys, const int Ap[], const int Ai[], const std::complex< double > Ax[], std::complex< double > X[], const std::complex< double > B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_solve (int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], double X[], const double B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_solve (int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], std::complex< double > X[], const std::complex< double > B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_symbolic (int n_row, int n_col, const int Ap[], const int Ai[], const double Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_symbolic (int n_row, int n_col, const int Ap[], const int Ai[], const std::complex< double > Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_symbolic (SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_symbolic (SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
const cholmod_sparse viewAsCholmod (const SparseMatrix< Scalar_, Options_, Index_ > &mat)
 
cholmod_sparse viewAsCholmod (const SparseSelfAdjointView< const SparseMatrix< Scalar_, Options_, Index_ >, UpLo > &mat)
 
const cholmod_sparse viewAsCholmod (const SparseVector< Scalar_, Options_, Index_ > &mat)
 
cholmod_dense viewAsCholmod (MatrixBase< Derived > &mat)
 
cholmod_sparse viewAsCholmod (Ref< SparseMatrix< Scalar_, Options_, StorageIndex_ > > mat)
 
Map< SparseMatrix< Scalar, Flags, StorageIndex > > viewAsEigen (cholmod_sparse &cm)
 
template<typename DerivedX , typename DerivedQ >
const Eigen::CwiseBinaryOp< Eigen::internal::scalar_zeta_op< typename DerivedX::Scalar >, const DerivedX, const DerivedQ > zeta (const Eigen::ArrayBase< DerivedX > &x, const Eigen::ArrayBase< DerivedQ > &q)
 

Variables

 ABx_lx
 
const unsigned int ActualPacketAccessBit
 
 Affine
 
 AffineCompact
 
 AliasFreeProduct
 
 Aligned
 
 Aligned128
 
 Aligned16
 
 Aligned32
 
 Aligned64
 
 Aligned8
 
EIGEN_DEPRECATED const unsigned int AlignedBit
 
 AlignedMask
 
 AlignedMax
 
 AllAtOnceTraversal
 
 AutoAlign
 
const int AutoOrder
 
 AutoSize
 
 Ax_lBx
 
 BAx_lx
 
 BothDirections
 
 BuiltIn
 
 CholmodAuto
 
 CholmodLDLt
 
 CholmodSimplicialLLt
 
 CholmodSupernodalLLt
 
 CoeffBasedProductMode
 
const int CoherentAccessPattern
 
 ColMajor
 
 ColPivHouseholderQRPreconditioner
 
 CompleteUnrolling
 
const unsigned int CompressedAccessBit
 
 ComputeEigenvectors
 
 ComputeFullU
 
 ComputeFullV
 
 ComputeThinU
 
 ComputeThinV
 
 Default
 
 DefaultProduct
 
 DefaultTraversal
 
const unsigned int DirectAccessBit
 
 DirectAccessors
 
 DirectWriteAccessors
 
 DisableQRDecomposition
 
 DontAlign
 
 DontAlignCols
 
const int Dynamic
 
const int DynamicIndex
 
 EigenvaluesOnly
 
 EigVecMask
 
EIGEN_DEPRECATED const unsigned int EvalBeforeAssigningBit
 
const unsigned int EvalBeforeNestingBit
 
 FullPivHouseholderQRPreconditioner
 
 FullPrecision
 
 GemmProduct
 
 GemvProduct
 
 GenEigMask
 
 GetAction
 
const unsigned int HereditaryBits
 
 Horizontal
 
 HouseholderQRPreconditioner
 
const int HugeCost
 
const int Infinity
 
 InnerProduct
 
const int InnerRandomAccessPattern
 
 InnerUnrolling
 
 InnerVectorizedTraversal
 
 InvalidInput
 
 InvalidTraversal
 
 IsDense
 
 Isometry
 
 IsSparse
 
 Large
 
 LazyCoeffBasedProductMode
 
 LazyProduct
 
const unsigned int LinearAccessBit
 
 LinearTraversal
 
 LinearVectorizedTraversal
 
 Lower
 
const unsigned int LvalueBit
 
const unsigned int NestByRefBit
 
 NoChange
 
 NoConvergence
 
 NoPivoting
 
const unsigned int NoPreferredStorageOrderBit
 
 NoQRPreconditioner
 
 NoUnrolling
 
 NumericalIssue
 
 OnTheLeft
 
 OnTheRight
 
 OuterProduct
 
const int OuterRandomAccessPattern
 
const unsigned int PacketAccessBit
 
 Pivoting
 
 Projective
 
 PropagateFast
 
 PropagateNaN
 
 PropagateNumbers
 
const int RandomAccessPattern
 
 ReadOnlyAccessors
 
 RowMajor
 
const unsigned int RowMajorBit
 
 SelfAdjoint
 
 Sequential
 
 SetAction
 
 SimplicialCholeskyLDLT
 
 SimplicialCholeskyLLT
 
const unsigned int SkylineBit
 
 SliceVectorizedTraversal
 
 Small
 
 Specialized
 
 StandardCompressedFormat
 
 StreamPrecision
 
 StrictlyLower
 
 StrictlyUpper
 
 Success
 
 Symmetric
 
 Unaligned
 
const int UndefinedIncr
 
 UnitDiag
 
 UnitLower
 
 UnitUpper
 
 Upper
 
 Vertical
 
 WriteAccessors
 
 ZeroDiag
 

Detailed Description

: TensorContractionSycl.h, provides various tensor contraction kernel for SYCL backend

Namespace containing all symbols from the Eigen library.

: Tensor Scan Sycl implement the extend version of "Efficient parallel scan algorithms for GPUs." .for Tensor operations. The algorithm requires up to 3 stage (consequently 3 kernels) depending on the size of the tensor. In the first kernel (ScanKernelFunctor), each threads within the work-group individually reduces the allocated elements per thread in order to reduces the total number of blocks. In the next step all thread within the work-group will reduce the associated blocks into the temporary buffers. In the next kernel(ScanBlockKernelFunctor), the temporary buffer is given as an input and all the threads within a work-group scan and reduces the boundaries between the blocks (generated from the previous kernel). and write the data on the temporary buffer. If the second kernel is required, the third and final kernel (ScanAdjustmentKernelFunctor) will adjust the final result into the output buffer. The original algorithm for the parallel prefix sum can be found here:

: This is the specialization of the reduction operation. Two phase reduction approach is used since the GPU does not have Global Synchronization for global memory among different work-group/thread block. To solve the problem, we need to create two kernels to reduce the data, where the first kernel reduce the data locally and each local workgroup/thread-block save the input data into global memory. In the second phase (global reduction) one work-group uses one work-group/thread-block to reduces the intermediate data into one single element. Here is an NVIDIA presentation explaining the optimized two phase reduction algorithm on GPU: https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

TensorContractionSycl.h

TensorReductionSycl.h

TensorScanSycl.h

Sengupta, Shubhabrata, Mark Harris, and Michael Garland. "Efficient parallel scan algorithms for GPUs." NVIDIA, Santa Clara, CA, Tech. Rep. NVR-2008-003 1, no. 1 (2008): 1-17.

Typedef Documentation

◆ Spline2d

typedef Spline<double,2> Eigen::Spline2d

2D double B-spline with dynamic degree.

Definition at line 88 of file SplineFwd.h.

◆ Spline2f

typedef Spline<float,2> Eigen::Spline2f

2D float B-spline with dynamic degree.

Definition at line 82 of file SplineFwd.h.

◆ Spline3d

typedef Spline<double,3> Eigen::Spline3d

3D double B-spline with dynamic degree.

Definition at line 91 of file SplineFwd.h.

◆ Spline3f

typedef Spline<float,3> Eigen::Spline3f

3D float B-spline with dynamic degree.

Definition at line 85 of file SplineFwd.h.

Enumeration Type Documentation

◆ anonymous enum

anonymous enum
Enumerator
NegationFlag 
ConjugationFlag 

Definition at line 17 of file Symmetry.h.

17  {
18  NegationFlag = 0x01,
19  ConjugationFlag = 0x02
20 };
@ NegationFlag
Definition: Symmetry.h:18
@ ConjugationFlag
Definition: Symmetry.h:19

◆ anonymous enum

anonymous enum
Enumerator
GlobalRealFlag 
GlobalImagFlag 
GlobalZeroFlag 

Definition at line 22 of file Symmetry.h.

22  {
23  GlobalRealFlag = 0x01,
24  GlobalImagFlag = 0x02,
25  GlobalZeroFlag = 0x03
26 };
@ GlobalZeroFlag
Definition: Symmetry.h:25
@ GlobalRealFlag
Definition: Symmetry.h:23
@ GlobalImagFlag
Definition: Symmetry.h:24

◆ anonymous enum

anonymous enum
Enumerator
IsSkyline 

Definition at line 26 of file SkylineUtil.h.

@ IsSkyline
Definition: SkylineUtil.h:26
const unsigned int SkylineBit
Definition: SkylineUtil.h:23

◆ anonymous enum

anonymous enum
Enumerator
SPD 
NonSymmetric 

Definition at line 18 of file MatrixMarketIterator.h.

18  {
19  SPD = 0x100,
20  NonSymmetric = 0x0
21 };

◆ AdditionalProductEvaluationMode

Enumerator
SkylineTimeDenseProduct 
SkylineTimeSkylineProduct 
DenseTimeSkylineProduct 

Definition at line 25 of file SkylineUtil.h.

◆ convolution_type

Enumerator
CONV1D 
CONV2D 
CONV3D 

Definition at line 30 of file TensorConvolutionSycl.h.

◆ FFTDirection

Enumerator
FFT_FORWARD 
FFT_REVERSE 

Definition at line 124 of file TensorForwardDeclarations.h.

124  {
125  FFT_FORWARD = 0,
126  FFT_REVERSE = 1
127 };

◆ FFTResultType

Enumerator
RealPart 
ImagPart 
BothParts 

Definition at line 118 of file TensorForwardDeclarations.h.

118  {
119  RealPart = 0,
120  ImagPart = 1,
121  BothParts = 2
122 };

◆ NumericalDiffMode

Enumerator
Forward 
Central 

Definition at line 20 of file NumericalDiff.h.

20  {
21  Forward,
22  Central
23 };

◆ PaddingType

Enumerator
PADDING_VALID 
PADDING_SAME 

Definition at line 259 of file TensorTraits.h.

259  {
260  PADDING_VALID = 1,
261  PADDING_SAME = 2
262 };
@ PADDING_VALID
Definition: TensorTraits.h:260
@ PADDING_SAME
Definition: TensorTraits.h:261

Function Documentation

◆ abs()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::abs ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 613 of file AutoDiffScalar.h.

613 : 1) );)

◆ abs2()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::abs2 ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 617 of file AutoDiffScalar.h.

◆ accurateDot()

template<typename Derived , typename OtherDerived >
Derived::Scalar Eigen::accurateDot ( const SparseMatrixBase< Derived > &  A,
const SparseMatrixBase< OtherDerived > &  other 
)

computes an accurate dot product on two sparse vectors

Uses an accurate summation algorithm for the accumulator in order to compute an accurate dot product for two sparse vectors.

Definition at line 80 of file SparseInverse.h.

80  {
81  typedef typename Derived::Scalar Scalar;
84  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived, OtherDerived)
85  static_assert(internal::is_same<Scalar, typename OtherDerived::Scalar>::value, "mismatched types");
86 
87  internal::evaluator<Derived> thisEval(A.derived());
88  typename Derived::ReverseInnerIterator i(thisEval, 0);
89 
90  internal::evaluator<OtherDerived> otherEval(other.derived());
91  typename OtherDerived::ReverseInnerIterator j(otherEval, 0);
92 
93  FABSum<Scalar> res;
94  while (i && j) {
95  if (i.index() == j.index()) {
96  res += numext::conj(i.value()) * j.value();
97  --i;
98  --j;
99  } else if (i.index() > j.index())
100  --i;
101  else
102  --j;
103  }
104  return res.value();
105 }
SparseMatrix< double > A(n, n)
int i
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
#define EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(TYPE0, TYPE1)
#define EIGEN_STATIC_ASSERT_VECTOR_ONLY(TYPE)
SparseMatrix< double, Options_, StorageIndex_ > & derived()
std::ptrdiff_t j

◆ acos()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::acos ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 685 of file AutoDiffScalar.h.

◆ asin()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::asin ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 680 of file AutoDiffScalar.h.

◆ atan2()

template<typename DerTypeA , typename DerTypeB >
AutoDiffScalar<Matrix<typename internal::traits<internal::remove_all_t<DerTypeA> >::Scalar,Dynamic,1> > Eigen::atan2 ( const AutoDiffScalar< DerTypeA > &  a,
const AutoDiffScalar< DerTypeB > &  b 
)
inline

Definition at line 656 of file AutoDiffScalar.h.

657 {
658  using std::atan2;
659  typedef typename internal::traits<internal::remove_all_t<DerTypeA>>::Scalar Scalar;
660  typedef AutoDiffScalar<Matrix<Scalar,Dynamic,1> > PlainADS;
661  PlainADS ret;
662  ret.value() = atan2(a.value(), b.value());
663 
664  Scalar squared_hypot = a.value() * a.value() + b.value() * b.value();
665 
666  // if (squared_hypot==0) the derivation is undefined and the following results in a NaN:
667  ret.derivatives() = (a.derivatives() * b.value() - a.value() * b.derivatives()) / squared_hypot;
668 
669  return ret;
670 }
ArrayXXi a
A scalar type replacement with automatic differentiation capability.
const Scalar & value() const
CoeffReturnType value() const
AutoDiffScalar< Matrix< typename internal::traits< internal::remove_all_t< DerTypeA > >::Scalar, Dynamic, 1 > > atan2(const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b)

◆ bessel_i0()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0_op<typename Derived::Scalar>, const Derived> Eigen::bessel_i0 ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise i0(x) to the given arrays.

It returns the modified Bessel function of the first kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of i0(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_i0()

Definition at line 34 of file BesselFunctionsArrayAPI.h.

34  {
35  return Eigen::CwiseUnaryOp<
36  Eigen::internal::scalar_bessel_i0_op<typename Derived::Scalar>,
37  const Derived>(x.derived());
38 }

◆ bessel_i0e()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i0e_op<typename Derived::Scalar>, const Derived> Eigen::bessel_i0e ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise i0e(x) to the given arrays.

It returns the exponentially scaled modified Bessel function of the first kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of i0e(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_i0e()

Definition at line 57 of file BesselFunctionsArrayAPI.h.

57  {
58  return Eigen::CwiseUnaryOp<
59  Eigen::internal::scalar_bessel_i0e_op<typename Derived::Scalar>,
60  const Derived>(x.derived());
61 }

◆ bessel_i1()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1_op<typename Derived::Scalar>, const Derived> Eigen::bessel_i1 ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise i1(x) to the given arrays.

It returns the modified Bessel function of the first kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of i1(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_i1()

Definition at line 79 of file BesselFunctionsArrayAPI.h.

79  {
80  return Eigen::CwiseUnaryOp<
81  Eigen::internal::scalar_bessel_i1_op<typename Derived::Scalar>,
82  const Derived>(x.derived());
83 }

◆ bessel_i1e()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_i1e_op<typename Derived::Scalar>, const Derived> Eigen::bessel_i1e ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise i1e(x) to the given arrays.

It returns the exponentially scaled modified Bessel function of the first kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of i1e(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_i1e()

Definition at line 102 of file BesselFunctionsArrayAPI.h.

102  {
103  return Eigen::CwiseUnaryOp<
104  Eigen::internal::scalar_bessel_i1e_op<typename Derived::Scalar>,
105  const Derived>(x.derived());
106 }

◆ bessel_j0()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j0_op<typename Derived::Scalar>, const Derived> Eigen::bessel_j0 ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise j0(x) to the given arrays.

It returns the Bessel function of the first kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of j0(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_j0()

Definition at line 214 of file BesselFunctionsArrayAPI.h.

214  {
215  return Eigen::CwiseUnaryOp<
216  Eigen::internal::scalar_bessel_j0_op<typename Derived::Scalar>,
217  const Derived>(x.derived());
218 }

◆ bessel_j1()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_j1_op<typename Derived::Scalar>, const Derived> Eigen::bessel_j1 ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise j1(x) to the given arrays.

It returns the modified Bessel function of the first kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of j1(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_j1()

Definition at line 258 of file BesselFunctionsArrayAPI.h.

258  {
259  return Eigen::CwiseUnaryOp<
260  Eigen::internal::scalar_bessel_j1_op<typename Derived::Scalar>,
261  const Derived>(x.derived());
262 }

◆ bessel_k0()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0_op<typename Derived::Scalar>, const Derived> Eigen::bessel_k0 ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise k0(x) to the given arrays.

It returns the modified Bessel function of the second kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of k0(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_k0()

Definition at line 124 of file BesselFunctionsArrayAPI.h.

124  {
125  return Eigen::CwiseUnaryOp<
126  Eigen::internal::scalar_bessel_k0_op<typename Derived::Scalar>,
127  const Derived>(x.derived());
128 }

◆ bessel_k0e()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k0e_op<typename Derived::Scalar>, const Derived> Eigen::bessel_k0e ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise k0e(x) to the given arrays.

It returns the exponentially scaled modified Bessel function of the second kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of k0e(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_k0e()

Definition at line 147 of file BesselFunctionsArrayAPI.h.

147  {
148  return Eigen::CwiseUnaryOp<
149  Eigen::internal::scalar_bessel_k0e_op<typename Derived::Scalar>,
150  const Derived>(x.derived());
151 }

◆ bessel_k1()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1_op<typename Derived::Scalar>, const Derived> Eigen::bessel_k1 ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise k1(x) to the given arrays.

It returns the modified Bessel function of the second kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of k1(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_k1()

Definition at line 169 of file BesselFunctionsArrayAPI.h.

169  {
170  return Eigen::CwiseUnaryOp<
171  Eigen::internal::scalar_bessel_k1_op<typename Derived::Scalar>,
172  const Derived>(x.derived());
173 }

◆ bessel_k1e()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_k1e_op<typename Derived::Scalar>, const Derived> Eigen::bessel_k1e ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise k1e(x) to the given arrays.

It returns the exponentially scaled modified Bessel function of the second kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of k1e(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_k1e()

Definition at line 192 of file BesselFunctionsArrayAPI.h.

192  {
193  return Eigen::CwiseUnaryOp<
194  Eigen::internal::scalar_bessel_k1e_op<typename Derived::Scalar>,
195  const Derived>(x.derived());
196 }

◆ bessel_y0()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y0_op<typename Derived::Scalar>, const Derived> Eigen::bessel_y0 ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise y0(x) to the given arrays.

It returns the Bessel function of the second kind of order zero.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of y0(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_y0()

Definition at line 236 of file BesselFunctionsArrayAPI.h.

236  {
237  return Eigen::CwiseUnaryOp<
238  Eigen::internal::scalar_bessel_y0_op<typename Derived::Scalar>,
239  const Derived>(x.derived());
240 }

◆ bessel_y1()

template<typename Derived >
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_bessel_y1_op<typename Derived::Scalar>, const Derived> Eigen::bessel_y1 ( const Eigen::ArrayBase< Derived > &  x)
inline
Returns
an expression of the coefficient-wise y1(x) to the given arrays.

It returns the Bessel function of the second kind of order one.

Parameters
xis the argument
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of y1(T) for any scalar type T to be supported.
See also
ArrayBase::bessel_y1()

Definition at line 280 of file BesselFunctionsArrayAPI.h.

280  {
281  return Eigen::CwiseUnaryOp<
282  Eigen::internal::scalar_bessel_y1_op<typename Derived::Scalar>,
283  const Derived>(x.derived());
284 }

◆ betainc() [1/2]

template<typename ADerived , typename BDerived , typename XDerived >
const TensorCwiseTernaryOp<internal::scalar_betainc_op<typename XDerived::Scalar>, const ADerived, const BDerived, const XDerived> Eigen::betainc ( const ADerived &  a,
const BDerived &  b,
const XDerived &  x 
)
inline

[c++11]

Returns
an expression of the coefficient-wise betainc(x, a, b) to the given tensors.

This function computes the regularized incomplete beta function (integral).

Definition at line 26 of file TensorGlobalFunctions.h.

26  {
27  return TensorCwiseTernaryOp<
28  internal::scalar_betainc_op<typename XDerived::Scalar>, const ADerived,
29  const BDerived, const XDerived>(
30  a, b, x, internal::scalar_betainc_op<typename XDerived::Scalar>());
31 }

◆ betainc() [2/2]

template<typename ArgADerived , typename ArgBDerived , typename ArgXDerived >
const Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived> Eigen::betainc ( const Eigen::ArrayBase< ArgADerived > &  a,
const Eigen::ArrayBase< ArgBDerived > &  b,
const Eigen::ArrayBase< ArgXDerived > &  x 
)
inline

[c++11]

Returns
an expression of the coefficient-wise betainc(x, a, b) to the given arrays.

This function computes the regularized incomplete beta function (integral).

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of betainc(T,T,T) for any scalar type T to be supported.
See also
Eigen::betainc(), Eigen::lgamma()

Definition at line 134 of file SpecialFunctionsArrayAPI.h.

135 {
136  return Eigen::CwiseTernaryOp<Eigen::internal::scalar_betainc_op<typename ArgXDerived::Scalar>, const ArgADerived, const ArgBDerived, const ArgXDerived>(
137  a.derived(),
138  b.derived(),
139  x.derived()
140  );
141 }

◆ bounding_box()

Box2d Eigen::bounding_box ( const Vector2d v)

Definition at line 9 of file BVH_Example.cpp.

9 { return Box2d(v, v); } //compute the bounding box of a single point
AlignedBox< double, 2 > Box2d
Definition: BVH_Example.cpp:6

◆ BVIntersect() [1/2]

template<typename BVH , typename Intersector >
void Eigen::BVIntersect ( const BVH &  tree,
Intersector &  intersector 
)

Given a BVH, runs the query encapsulated by intersector. The Intersector type must provide the following members:

bool intersectVolume(const BVH::Volume &volume) //returns true if volume intersects the query
bool intersectObject(const BVH::Object &object) //returns true if the search should terminate immediately

Definition at line 81 of file BVAlgorithms.h.

82 {
83  internal::intersect_helper(tree, intersector, tree.getRootIndex());
84 }

◆ BVIntersect() [2/2]

template<typename BVH1 , typename BVH2 , typename Intersector >
void Eigen::BVIntersect ( const BVH1 &  tree1,
const BVH2 &  tree2,
Intersector &  intersector 
)

Given two BVH's, runs the query on their Cartesian product encapsulated by intersector. The Intersector type must provide the following members:

bool intersectVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2) //returns true if product of volumes intersects the query
bool intersectVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2) //returns true if the volume-object product intersects the query
bool intersectObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2) //returns true if the volume-object product intersects the query
bool intersectObjectObject(const BVH1::Object &o1, const BVH2::Object &o2) //returns true if the search should terminate immediately

Definition at line 95 of file BVAlgorithms.h.

96 {
97  typedef typename BVH1::Index Index1;
98  typedef typename BVH2::Index Index2;
99  typedef internal::intersector_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Intersector> Helper1;
100  typedef internal::intersector_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Intersector> Helper2;
101  typedef typename BVH1::VolumeIterator VolIter1;
102  typedef typename BVH1::ObjectIterator ObjIter1;
103  typedef typename BVH2::VolumeIterator VolIter2;
104  typedef typename BVH2::ObjectIterator ObjIter2;
105 
106  VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1();
107  ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1();
108  VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2();
109  ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2();
110 
111  std::vector<std::pair<Index1, Index2> > todo(1, std::make_pair(tree1.getRootIndex(), tree2.getRootIndex()));
112 
113  while(!todo.empty()) {
114  tree1.getChildren(todo.back().first, vBegin1, vEnd1, oBegin1, oEnd1);
115  tree2.getChildren(todo.back().second, vBegin2, vEnd2, oBegin2, oEnd2);
116  todo.pop_back();
117 
118  for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree
119  const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1);
120  for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
121  if(intersector.intersectVolumeVolume(vol1, tree2.getVolume(*vCur2)))
122  todo.push_back(std::make_pair(*vBegin1, *vCur2));
123  }
124 
125  for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
126  Helper1 helper(*oCur2, intersector);
127  if(internal::intersect_helper(tree1, helper, *vBegin1))
128  return; //intersector said to stop query
129  }
130  }
131 
132  for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree
133  for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
134  Helper2 helper(*oBegin1, intersector);
135  if(internal::intersect_helper(tree2, helper, *vCur2))
136  return; //intersector said to stop query
137  }
138 
139  for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
140  if(intersector.intersectObjectObject(*oBegin1, *oCur2))
141  return; //intersector said to stop query
142  }
143  }
144  }
145 }

◆ BVMinimize() [1/2]

template<typename BVH , typename Minimizer >
Minimizer::Scalar Eigen::BVMinimize ( const BVH &  tree,
Minimizer &  minimizer 
)

Given a BVH, runs the query encapsulated by minimizer.

Returns
the minimum value. The Minimizer type must provide the following members:
typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
Scalar minimumOnVolume(const BVH::Volume &volume)
Scalar minimumOnObject(const BVH::Object &object)

Definition at line 221 of file BVAlgorithms.h.

222 {
223  return internal::minimize_helper(tree, minimizer, tree.getRootIndex(), (std::numeric_limits<typename Minimizer::Scalar>::max)());
224 }
CleanedUpDerType< DerType >::type() max(const AutoDiffScalar< DerType > &x, const T &y)

◆ BVMinimize() [2/2]

template<typename BVH1 , typename BVH2 , typename Minimizer >
Minimizer::Scalar Eigen::BVMinimize ( const BVH1 &  tree1,
const BVH2 &  tree2,
Minimizer &  minimizer 
)

Given two BVH's, runs the query on their cartesian product encapsulated by minimizer.

Returns
the minimum value. The Minimizer type must provide the following members:
typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one)
Scalar minimumOnVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2)
Scalar minimumOnVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2)
Scalar minimumOnObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2)
Scalar minimumOnObjectObject(const BVH1::Object &o1, const BVH2::Object &o2)

Definition at line 237 of file BVAlgorithms.h.

238 {
239  typedef typename Minimizer::Scalar Scalar;
240  typedef typename BVH1::Index Index1;
241  typedef typename BVH2::Index Index2;
242  typedef internal::minimizer_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Minimizer> Helper1;
243  typedef internal::minimizer_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Minimizer> Helper2;
244  typedef std::pair<Scalar, std::pair<Index1, Index2> > QueueElement; //first element is priority
245  typedef typename BVH1::VolumeIterator VolIter1;
246  typedef typename BVH1::ObjectIterator ObjIter1;
247  typedef typename BVH2::VolumeIterator VolIter2;
248  typedef typename BVH2::ObjectIterator ObjIter2;
249 
250  VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1();
251  ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1();
252  VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2();
253  ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2();
254  std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top
255 
256  Scalar minimum = (std::numeric_limits<Scalar>::max)();
257  todo.push(std::make_pair(Scalar(), std::make_pair(tree1.getRootIndex(), tree2.getRootIndex())));
258 
259  while(!todo.empty()) {
260  tree1.getChildren(todo.top().second.first, vBegin1, vEnd1, oBegin1, oEnd1);
261  tree2.getChildren(todo.top().second.second, vBegin2, vEnd2, oBegin2, oEnd2);
262  todo.pop();
263 
264  for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree
265  for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
266  minimum = (std::min)(minimum, minimizer.minimumOnObjectObject(*oBegin1, *oCur2));
267  }
268 
269  for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
270  Helper2 helper(*oBegin1, minimizer);
271  minimum = (std::min)(minimum, internal::minimize_helper(tree2, helper, *vCur2, minimum));
272  }
273  }
274 
275  for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree
276  const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1);
277 
278  for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree
279  Helper1 helper(*oCur2, minimizer);
280  minimum = (std::min)(minimum, internal::minimize_helper(tree1, helper, *vBegin1, minimum));
281  }
282 
283  for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree
284  Scalar val = minimizer.minimumOnVolumeVolume(vol1, tree2.getVolume(*vCur2));
285  if(val < minimum)
286  todo.push(std::make_pair(val, std::make_pair(*vBegin1, *vCur2)));
287  }
288  }
289  }
290  return minimum;
291 }
CleanedUpDerType< DerType >::type() min(const AutoDiffScalar< DerType > &x, const T &y)

◆ choose() [1/2]

template<typename T1 , typename T2 >
EIGEN_ALWAYS_INLINE const T2& Eigen::choose ( Cond< false >  ,
const T1 &  ,
const T2 &  second 
)

Definition at line 25 of file TensorMeta.h.

25  {
26  return second;
27 }

◆ choose() [2/2]

template<typename T1 , typename T2 >
EIGEN_ALWAYS_INLINE const T1& Eigen::choose ( Cond< true >  ,
const T1 &  first,
const T2 &   
)

Definition at line 20 of file TensorMeta.h.

20  {
21  return first;
22 }
EIGEN_CONSTEXPR Index first(const T &x) EIGEN_NOEXCEPT

◆ conj()

template<typename DerType >
const AutoDiffScalar<DerType>& Eigen::conj ( const AutoDiffScalar< DerType > &  x)
inline

Definition at line 576 of file AutoDiffScalar.h.

576 { return x; }

◆ constCast()

template<typename T >
T* Eigen::constCast ( const T data)
inline
Examples
/home/runner/work/eigen/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h.

Definition at line 29 of file TensorForwardDeclarations.h.

29  {
30  return const_cast<T*>(data);
31 }
int data[]

◆ cos()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::cos ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 627 of file AutoDiffScalar.h.

◆ cosh()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::cosh ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

◆ derivativesImpl()

template<typename SplineType , typename DerivativeType >
void Eigen::derivativesImpl ( const SplineType &  spline,
typename SplineType::Scalar  u,
DenseIndex  order,
DerivativeType &  der 
)

Definition at line 313 of file Spline.h.

314  {
315  enum { Dimension = SplineTraits<SplineType>::Dimension };
316  enum { Order = SplineTraits<SplineType>::OrderAtCompileTime };
317  enum { DerivativeOrder = DerivativeType::ColsAtCompileTime };
318 
319  typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType;
320  typedef typename SplineTraits<SplineType,DerivativeOrder>::BasisDerivativeType BasisDerivativeType;
321  typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr;
322 
323  const DenseIndex p = spline.degree();
324  const DenseIndex span = spline.span(u);
325 
326  const DenseIndex n = (std::min)(p, order);
327 
328  der.resize(Dimension,n+1);
329 
330  // Retrieve the basis function derivatives up to the desired order...
331  const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1);
332 
333  // ... and perform the linear combinations of the control points.
334  for (DenseIndex der_order=0; der_order<n+1; ++der_order)
335  {
336  const Replicate<BasisDerivativeRowXpr,Dimension,1> ctrl_weights( basis_func_ders.row(der_order) );
337  const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(spline.ctrls(),0,span-p,Dimension,p+1);
338  der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum();
339  }
340  }
int n
float * p
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex

◆ dimensions_match()

template<typename Dims1 , typename Dims2 >
EIGEN_ALWAYS_INLINE bool Eigen::dimensions_match ( Dims1  dims1,
Dims2  dims2 
)

Definition at line 441 of file TensorDimensions.h.

441  {
442  return internal::sizes_match_below_dim<Dims1, Dims2, internal::array_size<Dims1>::value, internal::array_size<Dims2>::value>::run(dims1, dims2);
443 }

◆ divup() [1/2]

template<typename T >
EIGEN_ALWAYS_INLINE T Eigen::divup ( const T  x,
const T  y 
)

Definition at line 39 of file TensorMeta.h.

39  {
40  // Note: This form is used because it cannot overflow.
41  return static_cast<T>(x == 0 ? 0 : (x - 1) / y + 1);
42 }

◆ divup() [2/2]

template<typename T , typename X , typename Y >
EIGEN_ALWAYS_INLINE T Eigen::divup ( const X  x,
const Y  y 
)

Definition at line 32 of file TensorMeta.h.

32  {
33  // Note: This form is used because it cannot overflow.
34  return static_cast<T>(x == 0 ? 0 : (x - 1) / y + 1);
35 }

◆ dsaupd_()

void Eigen::dsaupd_ ( int *  ido,
char *  bmat,
int *  n,
char *  which,
int *  nev,
double *  tol,
double *  resid,
int *  ncv,
double *  v,
int *  ldv,
int *  iparam,
int *  ipntr,
double *  workd,
double *  workl,
int *  lworkl,
int *  info 
)

◆ dseupd_()

void Eigen::dseupd_ ( int *  rvec,
char *  All,
int *  select,
double *  d,
double *  z,
int *  ldz,
double *  sigma,
char *  bmat,
int *  n,
char *  which,
int *  nev,
double *  tol,
double *  resid,
int *  ncv,
double *  v,
int *  ldv,
int *  iparam,
int *  ipntr,
double *  workd,
double *  workl,
int *  lworkl,
int *  ierr 
)

◆ exp()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::exp ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 637 of file AutoDiffScalar.h.

◆ gamma_sample_der_alpha()

template<typename AlphaDerived , typename SampleDerived >
const Eigen::CwiseBinaryOp<Eigen::internal::scalar_gamma_sample_der_alpha_op<typename AlphaDerived::Scalar>, const AlphaDerived, const SampleDerived> Eigen::gamma_sample_der_alpha ( const Eigen::ArrayBase< AlphaDerived > &  alpha,
const Eigen::ArrayBase< SampleDerived > &  sample 
)
inline

[c++11]

Returns
an expression of the coefficient-wise gamma_sample_der_alpha(alpha, sample) to the given arrays.

This function computes the coefficient-wise derivative of the sample of a Gamma(alpha, 1) random variable with respect to the parameter alpha.

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of gamma_sample_der_alpha(T,T) for any scalar type T to be supported.
See also
Eigen::igamma(), Eigen::lgamma()

Definition at line 74 of file SpecialFunctionsArrayAPI.h.

◆ glLoadMatrix() [1/3]

template<typename Scalar >
void Eigen::glLoadMatrix ( const Transform< Scalar, 3, Affine > &  t)

Definition at line 177 of file OpenGLSupport.

177 { glLoadMatrix(t.matrix()); }
void glLoadMatrix(const Transform< Scalar, 3, AffineCompact > &t)
Definition: OpenGLSupport:179

◆ glLoadMatrix() [2/3]

template<typename Scalar >
void Eigen::glLoadMatrix ( const Transform< Scalar, 3, AffineCompact > &  t)

Definition at line 179 of file OpenGLSupport.

179 { glLoadMatrix(Transform<Scalar,3,Affine>(t).matrix()); }

◆ glLoadMatrix() [3/3]

template<typename Scalar >
void Eigen::glLoadMatrix ( const Transform< Scalar, 3, Projective > &  t)

Definition at line 178 of file OpenGLSupport.

178 { glLoadMatrix(t.matrix()); }

◆ glMultMatrix() [1/3]

template<typename Scalar >
void Eigen::glMultMatrix ( const Transform< Scalar, 3, Affine > &  t)

Definition at line 169 of file OpenGLSupport.

169 { glMultMatrix(t.matrix()); }
void glMultMatrix(const Transform< Scalar, 3, AffineCompact > &t)
Definition: OpenGLSupport:171

◆ glMultMatrix() [2/3]

template<typename Scalar >
void Eigen::glMultMatrix ( const Transform< Scalar, 3, AffineCompact > &  t)

Definition at line 171 of file OpenGLSupport.

171 { glMultMatrix(Transform<Scalar,3,Affine>(t).matrix()); }

◆ glMultMatrix() [3/3]

template<typename Scalar >
void Eigen::glMultMatrix ( const Transform< Scalar, 3, Projective > &  t)

Definition at line 170 of file OpenGLSupport.

170 { glMultMatrix(t.matrix()); }

◆ glRotate() [1/3]

void Eigen::glRotate ( const Rotation2D< double > &  rot)
inline

Definition at line 185 of file OpenGLSupport.

186 {
187  glRotated(rot.angle()*180.0/double(EIGEN_PI), 0.0, 0.0, 1.0);
188 }

◆ glRotate() [2/3]

void Eigen::glRotate ( const Rotation2D< float > &  rot)
inline

Definition at line 181 of file OpenGLSupport.

182 {
183  glRotatef(rot.angle()*180.f/float(EIGEN_PI), 0.f, 0.f, 1.f);
184 }

◆ glRotate() [3/3]

template<typename Derived >
void Eigen::glRotate ( const RotationBase< Derived, 3 > &  rot)

Definition at line 190 of file OpenGLSupport.

191 {
192  Transform<typename Derived::Scalar,3,Projective> tr(rot);
193  glMultMatrix(tr.matrix());
194 }

◆ glScale()

template<typename Scalar >
void Eigen::glScale ( const UniformScaling< Scalar > &  s)

Definition at line 149 of file OpenGLSupport.

149 { glScale(Matrix<Scalar,3,1>::Constant(s.factor())); }
void glScale(const UniformScaling< Scalar > &s)
Definition: OpenGLSupport:149

◆ glScale2dv()

void Eigen::glScale2dv ( const double *  v)
inline

Definition at line 139 of file OpenGLSupport.

139 { glScaled(v[0], v[1], 1.0); }

◆ glScale2fv()

void Eigen::glScale2fv ( const float *  v)
inline

Definition at line 138 of file OpenGLSupport.

138 { glScalef(v[0], v[1], 1.f); }

◆ glScale3dv()

void Eigen::glScale3dv ( const double *  v)
inline

Definition at line 141 of file OpenGLSupport.

141 { glScaled(v[0], v[1], v[2]); }

◆ glScale3fv()

void Eigen::glScale3fv ( const float *  v)
inline

Definition at line 140 of file OpenGLSupport.

140 { glScalef(v[0], v[1], v[2]); }

◆ glTranslate() [1/2]

template<typename Scalar >
void Eigen::glTranslate ( const Translation< Scalar, 2 > &  t)

Definition at line 162 of file OpenGLSupport.

162 { glTranslate(t.vector()); }
void glTranslate(const Translation< Scalar, 3 > &t)
Definition: OpenGLSupport:163

◆ glTranslate() [2/2]

template<typename Scalar >
void Eigen::glTranslate ( const Translation< Scalar, 3 > &  t)

Definition at line 163 of file OpenGLSupport.

163 { glTranslate(t.vector()); }

◆ glTranslate2dv()

void Eigen::glTranslate2dv ( const double *  v)
inline

Definition at line 152 of file OpenGLSupport.

152 { glTranslated(v[0], v[1], 0.0); }

◆ glTranslate2fv()

void Eigen::glTranslate2fv ( const float *  v)
inline

Definition at line 151 of file OpenGLSupport.

151 { glTranslatef(v[0], v[1], 0.f); }

◆ glTranslate3dv()

void Eigen::glTranslate3dv ( const double *  v)
inline

Definition at line 154 of file OpenGLSupport.

154 { glTranslated(v[0], v[1], v[2]); }

◆ glTranslate3fv()

void Eigen::glTranslate3fv ( const float *  v)
inline

Definition at line 153 of file OpenGLSupport.

153 { glTranslatef(v[0], v[1], v[2]); }

◆ igamma()

template<typename Derived , typename ExponentDerived >
const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_op<typename Derived::Scalar>, const Derived, const ExponentDerived> Eigen::igamma ( const Eigen::ArrayBase< Derived > &  a,
const Eigen::ArrayBase< ExponentDerived > &  x 
)
inline

[c++11]

Returns
an expression of the coefficient-wise igamma(a, x) to the given arrays.

This function computes the coefficient-wise incomplete gamma function.

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar type T to be supported.
See also
Eigen::igammac(), Eigen::lgamma()

Definition at line 30 of file SpecialFunctionsArrayAPI.h.

31 {
33  a.derived(),
34  x.derived()
35  );
36 }

◆ igamma_der_a()

template<typename Derived , typename ExponentDerived >
const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igamma_der_a_op<typename Derived::Scalar>, const Derived, const ExponentDerived> Eigen::igamma_der_a ( const Eigen::ArrayBase< Derived > &  a,
const Eigen::ArrayBase< ExponentDerived > &  x 
)
inline

[c++11]

Returns
an expression of the coefficient-wise igamma_der_a(a, x) to the given arrays.

This function computes the coefficient-wise derivative of the incomplete gamma function with respect to the parameter a.

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of igamma_der_a(T,T) for any scalar type T to be supported.
See also
Eigen::igamma(), Eigen::lgamma()

Definition at line 53 of file SpecialFunctionsArrayAPI.h.

53  {
55  a.derived(),
56  x.derived());
57 }

◆ igammac()

template<typename Derived , typename ExponentDerived >
const Eigen::CwiseBinaryOp<Eigen::internal::scalar_igammac_op<typename Derived::Scalar>, const Derived, const ExponentDerived> Eigen::igammac ( const Eigen::ArrayBase< Derived > &  a,
const Eigen::ArrayBase< ExponentDerived > &  x 
)
inline

[c++11]

Returns
an expression of the coefficient-wise igammac(a, x) to the given arrays.

This function computes the coefficient-wise complementary incomplete gamma function.

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of igammac(T,T) for any scalar type T to be supported.
See also
Eigen::igamma(), Eigen::lgamma()

Definition at line 92 of file SpecialFunctionsArrayAPI.h.

93 {
95  a.derived(),
96  x.derived()
97  );
98 }

◆ imag()

template<typename DerType >
DerType::Scalar Eigen::imag ( const AutoDiffScalar< DerType > &  )
inline

Definition at line 580 of file AutoDiffScalar.h.

580 { return 0.; }

◆ log()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::log ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 641 of file AutoDiffScalar.h.

◆ make_index_list()

template<typename FirstType , typename... OtherTypes>
constexpr IndexList<FirstType, OtherTypes...> Eigen::make_index_list ( FirstType  val1,
OtherTypes...  other_vals 
)
constexpr

Definition at line 342 of file TensorIndexList.h.

342  {
343  return IndexList<FirstType, OtherTypes...>(val1, other_vals...);
344 }

◆ MakeAutoDiffScalar()

template<typename NewDerType >
AutoDiffScalar<NewDerType> Eigen::MakeAutoDiffScalar ( const typename NewDerType::Scalar &  value,
const NewDerType &  der 
)
inline

Definition at line 38 of file AutoDiffScalar.h.

38  {
39  return AutoDiffScalar<NewDerType>(value,der);
40 }

◆ max() [1/3]

template<typename DerType >
CleanedUpDerType<DerType>::type() Eigen::max ( const AutoDiffScalar< DerType > &  x,
const AutoDiffScalar< DerType > &  y 
)
inline

Definition at line 606 of file AutoDiffScalar.h.

606  {
607  return (x.value() >= y.value() ? x : y);
608 }
Matrix3f y

◆ max() [2/3]

template<typename DerType , typename T >
CleanedUpDerType<DerType>::type() Eigen::max ( const AutoDiffScalar< DerType > &  x,
const T y 
)
inline

Definition at line 587 of file AutoDiffScalar.h.

587  {
588  typedef typename CleanedUpDerType<DerType>::type ADS;
589  return (x >= y ? ADS(x) : ADS(y));
590 }

◆ max() [3/3]

template<typename DerType , typename T >
CleanedUpDerType<DerType>::type() Eigen::max ( const T x,
const AutoDiffScalar< DerType > &  y 
)
inline

Definition at line 597 of file AutoDiffScalar.h.

597  {
598  typedef typename CleanedUpDerType<DerType>::type ADS;
599  return (x > y ? ADS(x) : ADS(y));
600 }

◆ min() [1/3]

template<typename DerType >
CleanedUpDerType<DerType>::type() Eigen::min ( const AutoDiffScalar< DerType > &  x,
const AutoDiffScalar< DerType > &  y 
)
inline

Definition at line 602 of file AutoDiffScalar.h.

602  {
603  return (x.value() < y.value() ? x : y);
604 }

◆ min() [2/3]

template<typename DerType , typename T >
CleanedUpDerType<DerType>::type() Eigen::min ( const AutoDiffScalar< DerType > &  x,
const T y 
)
inline

Definition at line 582 of file AutoDiffScalar.h.

582  {
583  typedef typename CleanedUpDerType<DerType>::type ADS;
584  return (x <= y ? ADS(x) : ADS(y));
585 }

◆ min() [3/3]

template<typename DerType , typename T >
CleanedUpDerType<DerType>::type() Eigen::min ( const T x,
const AutoDiffScalar< DerType > &  y 
)
inline

Definition at line 592 of file AutoDiffScalar.h.

592  {
593  typedef typename CleanedUpDerType<DerType>::type ADS;
594  return (x < y ? ADS(x) : ADS(y));
595 }

◆ operator!=()

template<typename U , typename V >
EIGEN_CONSTEXPR bool Eigen::operator!= ( const Pair< U, V > &  x,
const Pair< U, V > &  y 
)
inline

Definition at line 246 of file TensorMeta.h.

246  {
247  return !(x == y);
248 }

◆ operator<<() [1/3]

template<typename IndexType , int NumDims>
std::ostream& Eigen::operator<< ( std::ostream &  os,
const DSizes< IndexType, NumDims > &  dims 
)

Definition at line 344 of file TensorDimensions.h.

345  {
346  os << "[";
347  for (int i = 0; i < NumDims; ++i) {
348  if (i > 0) os << ", ";
349  os << dims[i];
350  }
351  os << "]";
352  return os;
353 }

◆ operator<<() [2/3]

template<typename FirstType , typename... OtherTypes>
std::ostream& Eigen::operator<< ( std::ostream &  os,
const IndexList< FirstType, OtherTypes... > &  dims 
)

Definition at line 330 of file TensorIndexList.h.

331  {
332  os << "[";
333  for (size_t i = 0; i < 1 + sizeof...(OtherTypes); ++i) {
334  if (i > 0) os << ", ";
335  os << dims[i];
336  }
337  os << "]";
338  return os;
339 }

◆ operator<<() [3/3]

template<typename T >
std::ostream& Eigen::operator<< ( std::ostream &  s,
const TensorBase< T, ReadOnlyAccessors > &  t 
)

Definition at line 368 of file TensorIO.h.

368  {
369  s << t.format(TensorIOFormat::Plain());
370  return s;
371 }

◆ operator==()

template<typename U , typename V >
EIGEN_CONSTEXPR bool Eigen::operator== ( const Pair< U, V > &  x,
const Pair< U, V > &  y 
)
inline

Definition at line 240 of file TensorMeta.h.

240  {
241  return (x.first == y.first && x.second == y.second);
242 }

◆ polygamma()

template<typename DerivedN , typename DerivedX >
const Eigen::CwiseBinaryOp<Eigen::internal::scalar_polygamma_op<typename DerivedX::Scalar>, const DerivedN, const DerivedX> Eigen::polygamma ( const Eigen::ArrayBase< DerivedN > &  n,
const Eigen::ArrayBase< DerivedX > &  x 
)
inline

[c++11]

Returns
an expression of the coefficient-wise polygamma(n, x) to the given arrays.

It returns the n -th derivative of the digamma(psi) evaluated at x.

Note
This function supports only float and double scalar types in c++11 mode. To support other scalar types, or float/double in non c++11 mode, the user has to provide implementations of polygamma(T,T) for any scalar type T to be supported.
See also
Eigen::digamma()

Definition at line 114 of file SpecialFunctionsArrayAPI.h.

115 {
117  n.derived(),
118  x.derived()
119  );
120 }

◆ pow()

template<typename DerType >
Eigen::AutoDiffScalar<EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(internal::remove_all_t<DerType>, typename internal::traits<internal::remove_all_t<DerType>>::Scalar,product) > Eigen::pow ( const Eigen::AutoDiffScalar< DerType > &  x,
const typename internal::traits< internal::remove_all_t< DerType >>::Scalar &  y 
)
inline

Definition at line 646 of file AutoDiffScalar.h.

647 {
648  using namespace Eigen;
649  using std::pow;
650  return Eigen::MakeAutoDiffScalar(pow(x.value(),y), x.derivatives() * (y * pow(x.value(),y-1)));
651 }
: TensorContractionSycl.h, provides various tensor contraction kernel for SYCL backend
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(internal::remove_all_t< DerType >, typename internal::traits< internal::remove_all_t< DerType >>::Scalar, product) > pow(const Eigen::AutoDiffScalar< DerType > &x, const typename internal::traits< internal::remove_all_t< DerType >>::Scalar &y)
AutoDiffScalar< NewDerType > MakeAutoDiffScalar(const typename NewDerType::Scalar &value, const NewDerType &der)

◆ real()

template<typename DerType >
const AutoDiffScalar<DerType>& Eigen::real ( const AutoDiffScalar< DerType > &  x)
inline

Definition at line 578 of file AutoDiffScalar.h.

578 { return x; }

◆ sin()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::sin ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 632 of file AutoDiffScalar.h.

◆ sinh()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::sinh ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 695 of file AutoDiffScalar.h.

◆ sqrt()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::sqrt ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 622 of file AutoDiffScalar.h.

◆ ssaupd_()

void Eigen::ssaupd_ ( int *  ido,
char *  bmat,
int *  n,
char *  which,
int *  nev,
float *  tol,
float *  resid,
int *  ncv,
float *  v,
int *  ldv,
int *  iparam,
int *  ipntr,
float *  workd,
float *  workl,
int *  lworkl,
int *  info 
)

◆ sseupd_()

void Eigen::sseupd_ ( int *  rvec,
char *  All,
int *  select,
float *  d,
float *  z,
int *  ldz,
float *  sigma,
char *  bmat,
int *  n,
char *  which,
int *  nev,
float *  tol,
float *  resid,
int *  ncv,
float *  v,
int *  ldv,
int *  iparam,
int *  ipntr,
float *  workd,
float *  workl,
int *  lworkl,
int *  ierr 
)

◆ tan()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::tan ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 675 of file AutoDiffScalar.h.

◆ tanh()

template<typename DerType >
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Eigen::internal::remove_all_t<DerType>, typename Eigen::internal::traits<Eigen::internal::remove_all_t<DerType>>::Scalar, product) > Eigen::tanh ( const Eigen::AutoDiffScalar< DerType > &  x)
inline

Definition at line 690 of file AutoDiffScalar.h.

◆ zeta()

template<typename DerivedX , typename DerivedQ >
const Eigen::CwiseBinaryOp<Eigen::internal::scalar_zeta_op<typename DerivedX::Scalar>, const DerivedX, const DerivedQ> Eigen::zeta ( const Eigen::ArrayBase< DerivedX > &  x,
const Eigen::ArrayBase< DerivedQ > &  q 
)
inline
Returns
an expression of the coefficient-wise zeta(x, q) to the given arrays.

It returns the Riemann zeta function of two arguments x and q:

Parameters
xis the exponent, it must be > 1
qis the shift, it must be > 0
Note
This function supports only float and double scalar types. To support other scalar types, the user has to provide implementations of zeta(T,T) for any scalar type T to be supported.
See also
ArrayBase::zeta()

Definition at line 158 of file SpecialFunctionsArrayAPI.h.

159 {
161  x.derived(),
162  q.derived()
163  );
164 }

Variable Documentation

◆ SkylineBit

const unsigned int Eigen::SkylineBit

Definition at line 23 of file SkylineUtil.h.