This module provides a QR based polynomial solver.
More...
This module provides a QR based polynomial solver.
To use this module, add
at the start of your source file.
◆ cauchy_max_bound()
template<typename Polynomial >
NumTraits<typename Polynomial::Scalar>::Real Eigen::cauchy_max_bound |
( |
const Polynomial & |
poly | ) |
|
|
inline |
- Returns
- a maximum bound for the absolute value of any root of the polynomial.
- Parameters
-
[in] | poly | : the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. \( 1 + 3x^2 \) is stored as a vector \( [ 1, 0, 3 ] \). |
- Precondition
- the leading coefficient of the input polynomial poly must be non zero
Definition at line 77 of file PolynomialUtils.h.
80 typedef typename Polynomial::Scalar Scalar;
84 const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
88 cb +=
abs(poly[i]*inv_leading_coeff); }
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
adouble abs(const adouble &x)
◆ cauchy_min_bound()
template<typename Polynomial >
NumTraits<typename Polynomial::Scalar>::Real Eigen::cauchy_min_bound |
( |
const Polynomial & |
poly | ) |
|
|
inline |
- Returns
- a minimum bound for the absolute value of any non zero root of the polynomial.
- Parameters
-
[in] | poly | : the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. \( 1 + 3x^2 \) is stored as a vector \( [ 1, 0, 3 ] \). |
Definition at line 100 of file PolynomialUtils.h.
103 typedef typename Polynomial::Scalar Scalar;
107 while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++
i; }
108 if( poly.size()-1 == i ){
111 const Scalar inv_min_coeff = Scalar(1)/poly[
i];
114 cb +=
abs(poly[j]*inv_min_coeff); }
◆ poly_eval()
template<typename Polynomials , typename T >
T Eigen::poly_eval |
( |
const Polynomials & |
poly, |
|
|
const T & |
x |
|
) |
| |
|
inline |
- Returns
- the evaluation of the polynomial at x using stabilized Horner algorithm.
- Parameters
-
[in] | poly | : the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. \( 1 + 3x^2 \) is stored as a vector \( [ 1, 0, 3 ] \). |
[in] | x | : the value to evaluate the polynomial at. |
Definition at line 48 of file PolynomialUtils.h.
50 typedef typename NumTraits<T>::Real Real;
59 val = val*inv_x + poly[
i]; }
T poly_eval_horner(const Polynomials &poly, const T &x)
Eigen::AutoDiffScalar< EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(internal::remove_all_t< DerType >, typename internal::traits< internal::remove_all_t< DerType >>::Scalar, product) > pow(const Eigen::AutoDiffScalar< DerType > &x, const typename internal::traits< internal::remove_all_t< DerType >>::Scalar &y)
adouble abs2(const adouble &x)
◆ poly_eval_horner()
template<typename Polynomials , typename T >
T Eigen::poly_eval_horner |
( |
const Polynomials & |
poly, |
|
|
const T & |
x |
|
) |
| |
|
inline |
- Returns
- the evaluation of the polynomial at x using Horner algorithm.
- Parameters
-
[in] | poly | : the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. \( 1 + 3x^2 \) is stored as a vector \( [ 1, 0, 3 ] \). |
[in] | x | : the value to evaluate the polynomial at. |
- Note
- for stability: \( |x| \le 1 \)
Definition at line 30 of file PolynomialUtils.h.
32 T val=poly[poly.size()-1];
34 val = val*
x + poly[
i]; }
◆ roots_to_monicPolynomial()
template<typename RootVector , typename Polynomial >
void Eigen::roots_to_monicPolynomial |
( |
const RootVector & |
rv, |
|
|
Polynomial & |
poly |
|
) |
| |
Given the roots of a polynomial compute the coefficients in the monomial basis of the monic polynomial with same roots and minimal degree. If RootVector is a vector of complexes, Polynomial should also be a vector of complexes.
- Parameters
-
[in] | rv | : a vector containing the roots of a polynomial. |
[out] | poly | : the vector of coefficients of the polynomial ordered by degrees i.e. poly[i] is the coefficient of degree i of the polynomial e.g. \( 3 + x^2 \) is stored as a vector \( [ 3, 0, 1 ] \). |
Definition at line 129 of file PolynomialUtils.h.
132 typedef typename Polynomial::Scalar Scalar;
134 poly.setZero( rv.size()+1 );
135 poly[0] = -rv[0]; poly[1] = Scalar(1);
139 poly[0] = -rv[
i]*poly[0];