Two-sided Jacobi SVD decomposition of a rectangular matrix. More...
Public Member Functions | |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
JacobiSVD & | compute (const MatrixType &matrix) |
Method performing the decomposition of given matrix. Computes Thin/Full unitaries U/V if specified using the Options template parameter or the class constructor. More... | |
EIGEN_DEPRECATED JacobiSVD & | compute (const MatrixType &matrix, unsigned int computationOptions) |
Method performing the decomposition of given matrix, as specified by the computationOptions parameter. More... | |
JacobiSVD () | |
Default Constructor. More... | |
JacobiSVD (const MatrixType &matrix) | |
Constructor performing the decomposition of given matrix, using the custom options specified with the Options template paramter. More... | |
JacobiSVD (const MatrixType &matrix, unsigned int computationOptions) | |
Constructor performing the decomposition of given matrix using specified options for computing unitaries. More... | |
JacobiSVD (Index rows, Index cols) | |
Default Constructor with memory preallocation. More... | |
EIGEN_DEPRECATED | JacobiSVD (Index rows, Index cols, unsigned int computationOptions) |
Default Constructor with memory preallocation. More... | |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
![]() | |
Index | cols () const |
bool | computeU () const |
bool | computeV () const |
JacobiSVD< MatrixType_, Options_ > & | derived () |
const JacobiSVD< MatrixType_, Options_ > & | derived () const |
ComputationInfo | info () const |
Reports whether previous computation was successful. More... | |
const MatrixUType & | matrixU () const |
const MatrixVType & | matrixV () const |
Index | nonzeroSingularValues () const |
Index | rank () const |
Index | rows () const |
JacobiSVD< MatrixType_, Options_ > & | setThreshold (const RealScalar &threshold) |
JacobiSVD< MatrixType_, Options_ > & | setThreshold (Default_t) |
const SingularValuesType & | singularValues () const |
const Solve< JacobiSVD< MatrixType_, Options_ >, Rhs > | solve (const MatrixBase< Rhs > &b) const |
RealScalar | threshold () const |
![]() | |
const AdjointReturnType | adjoint () const |
Derived & | derived () |
const Derived & | derived () const |
template<typename Rhs > | |
const Solve< Derived, Rhs > | solve (const MatrixBase< Rhs > &b) const |
SolverBase () | |
const ConstTransposeReturnType | transpose () const |
~SolverBase () | |
![]() | |
template<typename Dest > | |
void | addTo (Dest &dst) const |
template<typename Dest > | |
void | applyThisOnTheLeft (Dest &dst) const |
template<typename Dest > | |
void | applyThisOnTheRight (Dest &dst) const |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
Derived & | const_cast_derived () const |
const Derived & | const_derived () const |
Derived & | derived () |
const Derived & | derived () const |
template<typename Dest > | |
void | evalTo (Dest &dst) const |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
template<typename Dest > | |
void | subTo (Dest &dst) const |
Protected Member Functions | |
EIGEN_STATIC_ASSERT (!(ShouldComputeThinU &&int(QRPreconditioner)==int(FullPivHouseholderQRPreconditioner)) &&!(ShouldComputeThinU &&int(QRPreconditioner)==int(FullPivHouseholderQRPreconditioner)), "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " "Use the ColPivHouseholderQR preconditioner instead.") template< typename MatrixType__ | |
![]() | |
void | _check_compute_assertions () const |
void | _check_solve_assertion (const Rhs &b) const |
bool | allocate (Index rows, Index cols, unsigned int computationOptions) |
SVDBase () | |
Default Constructor. More... | |
![]() | |
template<bool Transpose_, typename Rhs > | |
void | _check_solve_assertion (const Rhs &b) const |
Protected Attributes | |
internal::qr_preconditioner_impl< MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreColsThanRows > | m_qr_precond_morecols |
internal::qr_preconditioner_impl< MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols > | m_qr_precond_morerows |
MatrixType | m_scaledMatrix |
WorkMatrixType | m_workMatrix |
int | Options__ |
![]() | |
Index | m_cols |
unsigned int | m_computationOptions |
bool | m_computeFullU |
bool | m_computeFullV |
bool | m_computeThinU |
bool | m_computeThinV |
Index | m_diagSize |
ComputationInfo | m_info |
bool | m_isAllocated |
bool | m_isInitialized |
MatrixUType | m_matrixU |
MatrixVType | m_matrixV |
Index | m_nonzeroSingularValues |
RealScalar | m_prescribedThreshold |
Index | m_rows |
SingularValuesType | m_singularValues |
bool | m_usePrescribedThreshold |
Private Types | |
typedef SVDBase< JacobiSVD > | Base |
Private Member Functions | |
void | allocate (Index rows, Index cols, unsigned int computationOptions) |
JacobiSVD & | compute_impl (const MatrixType &matrix, unsigned int computationOptions) |
Additional Inherited Members | |
![]() | |
static constexpr bool | ShouldComputeFullU |
static constexpr bool | ShouldComputeFullV |
static constexpr bool | ShouldComputeThinU |
static constexpr bool | ShouldComputeThinV |
Two-sided Jacobi SVD decomposition of a rectangular matrix.
MatrixType_ | the type of the matrix of which we are computing the SVD decomposition |
Options | this optional parameter allows one to specify the type of QR decomposition that will be used internally for the R-SVD step for non-square matrices. Additionally, it allows one to specify whether to compute thin or full unitaries U and V. See discussion of possible values below. |
SVD decomposition consists in decomposing any n-by-p matrix A as a product
where U is a n-by-n unitary, V is a p-by-p unitary, and S is a n-by-p real positive matrix which is zero outside of its main diagonal; the diagonal entries of S are known as the singular values of A and the columns of U and V are known as the left and right singular vectors of A respectively.
Singular values are always sorted in decreasing order.
This JacobiSVD decomposition computes only the singular values by default. If you want U or V, you need to ask for them explicitly.
You can ask for only thin U or V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting m be the smaller value among n and p, there are only m singular vectors; the remaining columns of U and V do not correspond to actual singular vectors. Asking for thin U or V means asking for only their m first columns to be formed. So U is then a n-by-m matrix, and V is then a p-by-m matrix. Notice that thin U and V are all you need for (least squares) solving.
Here's an example demonstrating basic usage:
Output:
Here is the matrix m: 0.68 0.597 -0.211 0.823 0.566 -0.605 Its singular values are: 1.19 0.899 Its left singular vectors are the columns of the thin U matrix: 0.388 0.866 0.712 -0.0634 -0.586 0.496 Its right singular vectors are the columns of the thin V matrix: -0.183 0.983 0.983 0.183 Now consider this rhs vector: 1 0 0 A least-squares solution of m*x = rhs is: 0.888 0.496
This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than bidiagonalizing SVD algorithms for large square matrices; however its complexity is still
If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to terminate in finite (and reasonable) time.
The possible QR preconditioners that can be set with Options template parameter are:
One may also use the Options template parameter to specify how the unitaries should be computed. The options are ComputeThinU, ComputeThinV, ComputeFullU, ComputeFullV. It is not possible to request both the thin and full versions of a unitary. By default, unitaries will not be computed.
You can set the QRPreconditioner and unitary options together: JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner | ComputeThinU | ComputeFullV>
Definition at line 514 of file JacobiSVD.h.
|
private |
Definition at line 515 of file JacobiSVD.h.
typedef Base::Index Eigen::JacobiSVD< MatrixType_, Options_ >::Index |
Definition at line 521 of file JacobiSVD.h.
typedef MatrixType_ Eigen::JacobiSVD< MatrixType_, Options_ >::MatrixType |
Definition at line 518 of file JacobiSVD.h.
typedef Base::MatrixUType Eigen::JacobiSVD< MatrixType_, Options_ >::MatrixUType |
Definition at line 534 of file JacobiSVD.h.
typedef Base::MatrixVType Eigen::JacobiSVD< MatrixType_, Options_ >::MatrixVType |
Definition at line 535 of file JacobiSVD.h.
typedef Base::RealScalar Eigen::JacobiSVD< MatrixType_, Options_ >::RealScalar |
Definition at line 520 of file JacobiSVD.h.
typedef Base::Scalar Eigen::JacobiSVD< MatrixType_, Options_ >::Scalar |
Definition at line 519 of file JacobiSVD.h.
typedef Base::SingularValuesType Eigen::JacobiSVD< MatrixType_, Options_ >::SingularValuesType |
Definition at line 536 of file JacobiSVD.h.
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> Eigen::JacobiSVD< MatrixType_, Options_ >::WorkMatrixType |
Definition at line 539 of file JacobiSVD.h.
anonymous enum |
Enumerator | |
---|---|
Options | |
QRPreconditioner | |
RowsAtCompileTime | |
ColsAtCompileTime | |
DiagSizeAtCompileTime | |
MaxRowsAtCompileTime | |
MaxColsAtCompileTime | |
MaxDiagSizeAtCompileTime | |
MatrixOptions |
Definition at line 522 of file JacobiSVD.h.
|
inline |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via JacobiSVD::compute(const MatrixType&).
Definition at line 546 of file JacobiSVD.h.
|
inline |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size and Options template parameter.
Definition at line 555 of file JacobiSVD.h.
|
inline |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
One cannot request unitaries using both the Options template parameter and the constructor. If possible, prefer using the Options template parameter.
computationOptions | specify whether to compute Thin/Full unitaries U/V |
Definition at line 572 of file JacobiSVD.h.
|
inlineexplicit |
Constructor performing the decomposition of given matrix, using the custom options specified with the Options template paramter.
matrix | the matrix to decompose |
Definition at line 582 of file JacobiSVD.h.
|
inline |
Constructor performing the decomposition of given matrix using specified options for computing unitaries.
One cannot request unitiaries using both the Options template parameter and the constructor. If possible, prefer using the Options template parameter.
matrix | the matrix to decompose |
computationOptions | specify whether to compute Thin/Full unitaries U/V |
Definition at line 597 of file JacobiSVD.h.
|
private |
Definition at line 674 of file JacobiSVD.h.
|
inline |
Definition at line 65 of file EigenBase.h.
|
inline |
Method performing the decomposition of given matrix. Computes Thin/Full unitaries U/V if specified using the Options template parameter or the class constructor.
matrix | the matrix to decompose |
Definition at line 607 of file JacobiSVD.h.
|
inline |
Method performing the decomposition of given matrix, as specified by the computationOptions
parameter.
matrix | the matrix to decompose |
computationOptions | specify whether to compute Thin/Full unitaries U/V |
Definition at line 619 of file JacobiSVD.h.
|
private |
Definition at line 689 of file JacobiSVD.h.
|
protected |
|
inline |
Definition at line 62 of file EigenBase.h.
|
protected |
Definition at line 666 of file JacobiSVD.h.
|
protected |
Definition at line 668 of file JacobiSVD.h.
|
protected |
Definition at line 670 of file JacobiSVD.h.
|
protected |
Definition at line 669 of file JacobiSVD.h.
|
protected |
Definition at line 660 of file JacobiSVD.h.