cout<< "Consider the first eigenvalue, lambda = "<< lambda<< endl;VectorXcd v=es.eigenvectors().col(0);cout<< "If v is the corresponding eigenvector, then lambda * v = "<< endl<< lambda *v<< endl;cout<< "... and A * v = "<< endl<< A.cast< complex< double > >()
: EigenSolver_EigenSolver_MatrixType.cpp
cout<< "Here is the matrix m:"<< endl<< m<< endl;cout<< "Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m:"<< endl<< m.diagonal< 1 >()
: MatrixBase_diagonal_template_int.cpp
cout<< "Here is the matrix m:\n"<< m<< endl;Matrix3d n=Matrix3d::Ones();n.triangularView< Eigen::Lower >()
: Triangular_solve.cpp
cout<< "Here is the matrix n:\n"<< n<< endl;cout<< "And now here is m.inverse()*n, taking advantage of the fact that" " m is upper-triangular:\n"<< m.triangularView< Eigen::Upper >()
: Triangular_solve.cpp
cout<< "Here is the vector v:"<< endl<< v<< endl;cout<< "Here is v.head(2):"<< endl<< v.head< 2 >()
: MatrixBase_template_int_start.cpp
cout<< "Here is the vector v:"<< endl<< v<< endl;cout<< "Here is v.tail(2):"<< endl<< v.tail< 2 >()
: MatrixBase_template_int_end.cpp
cout<< "Here is, up to permutations, its LU decomposition matrix:"<< endl<< lu.matrixLU()<< endl;cout<< "Here is the L part:"<< endl;Matrix5x5 l=Matrix5x5::Identity();l.block< 5, 3 >()
: class_FullPivLU.cpp