Base class for all dense matrices, vectors, and expressions. More...
Classes | |
struct | ConstSelfAdjointViewReturnType |
struct | ConstTriangularViewReturnType |
struct | SelfAdjointViewReturnType |
struct | TriangularViewReturnType |
Public Types | |
enum | { HomogeneousReturnTypeDirection } |
enum | { SizeMinusOne } |
typedef Diagonal< const Derived > | ConstDiagonalReturnType |
typedef Block< const Derived, internal::traits< Derived >::ColsAtCompileTime==1 ? SizeMinusOne :1, internal::traits< Derived >::ColsAtCompileTime==1 ? 1 :SizeMinusOne > | ConstStartMinusOne |
typedef Diagonal< Derived > | DiagonalReturnType |
typedef Homogeneous< Derived, HomogeneousReturnTypeDirection > | HomogeneousReturnType |
typedef Base::PlainObject | PlainObject |
typedef internal::stem_function< Scalar >::type | StemFunction |
Public Types inherited from Eigen::DenseBase< Derived > | |
enum | { RowsAtCompileTime , ColsAtCompileTime , SizeAtCompileTime , MaxRowsAtCompileTime , MaxColsAtCompileTime , MaxSizeAtCompileTime , IsVectorAtCompileTime , NumDimensions , Flags , IsRowMajor , InnerSizeAtCompileTime , InnerStrideAtCompileTime , OuterStrideAtCompileTime } |
enum | { IsPlainObjectBase } |
typedef DenseCoeffsBase< Derived, internal::accessors_level< Derived >::value > | Base |
typedef Base::CoeffReturnType | CoeffReturnType |
typedef VectorwiseOp< Derived, Vertical > | ColwiseReturnType |
typedef random_access_iterator_type | const_iterator |
typedef const VectorwiseOp< const Derived, Vertical > | ConstColwiseReturnType |
typedef const Reverse< const Derived, BothDirections > | ConstReverseReturnType |
typedef const VectorwiseOp< const Derived, Horizontal > | ConstRowwiseReturnType |
typedef Transpose< const Derived > | ConstTransposeReturnType |
typedef internal::add_const_on_value_type_t< typename internal::eval< Derived >::type > | EvalReturnType |
typedef random_access_iterator_type | iterator |
typedef internal::find_best_packet< Scalar, SizeAtCompileTime >::type | PacketScalar |
typedef Array< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTime > | PlainArray |
typedef Matrix< typename internal::traits< Derived >::Scalar, internal::traits< Derived >::RowsAtCompileTime, internal::traits< Derived >::ColsAtCompileTime, AutoAlign|(internal::traits< Derived >::Flags &RowMajorBit ? RowMajor :ColMajor), internal::traits< Derived >::MaxRowsAtCompileTime, internal::traits< Derived >::MaxColsAtCompileTime > | PlainMatrix |
typedef std::conditional_t< internal::is_same< typename internal::traits< Derived >::XprKind, MatrixXpr >::value, PlainMatrix, PlainArray > | PlainObject |
The plain matrix or array type corresponding to this expression. More... | |
typedef CwiseNullaryOp< internal::scalar_random_op< Scalar >, PlainObject > | RandomReturnType |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef Reverse< Derived, BothDirections > | ReverseReturnType |
typedef VectorwiseOp< Derived, Horizontal > | RowwiseReturnType |
typedef internal::traits< Derived >::Scalar | Scalar |
typedef internal::traits< Derived >::StorageIndex | StorageIndex |
The type used to store indices. More... | |
typedef internal::traits< Derived >::StorageKind | StorageKind |
typedef Transpose< Derived > | TransposeReturnType |
typedef Scalar | value_type |
Public Types inherited from Eigen::DenseCoeffsBase< Derived, DirectWriteAccessors > | |
typedef DenseCoeffsBase< Derived, WriteAccessors > | Base |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef internal::traits< Derived >::Scalar | Scalar |
Public Types inherited from Eigen::DenseCoeffsBase< Derived, WriteAccessors > | |
typedef DenseCoeffsBase< Derived, ReadOnlyAccessors > | Base |
typedef internal::packet_traits< Scalar >::type | PacketScalar |
typedef NumTraits< Scalar >::Real | RealScalar |
typedef internal::traits< Derived >::Scalar | Scalar |
typedef internal::traits< Derived >::StorageKind | StorageKind |
Public Types inherited from Eigen::DenseCoeffsBase< Derived, ReadOnlyAccessors > | |
typedef EigenBase< Derived > | Base |
typedef std::conditional_t< bool(internal::traits< Derived >::Flags &LvalueBit), const Scalar &, std::conditional_t< internal::is_arithmetic< Scalar >::value, Scalar, const Scalar > > | CoeffReturnType |
typedef internal::add_const_on_value_type_if_arithmetic< typename internal::packet_traits< Scalar >::type >::type | PacketReturnType |
typedef internal::packet_traits< Scalar >::type | PacketScalar |
typedef internal::traits< Derived >::Scalar | Scalar |
typedef internal::traits< Derived >::StorageKind | StorageKind |
Public Types inherited from Eigen::EigenBase< Derived > | |
typedef Eigen::Index | Index |
The interface type of indices. More... | |
typedef internal::traits< Derived >::StorageKind | StorageKind |
Public Member Functions | |
const MatrixFunctionReturnValue< Derived > | acosh () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic cosine use ArrayBase::acosh . More... | |
const AdjointReturnType | adjoint () const |
void | adjointInPlace () |
template<typename EssentialPart > | |
void | applyHouseholderOnTheLeft (const EssentialPart &essential, const Scalar &tau, Scalar *workspace) |
template<typename EssentialPart > | |
void | applyHouseholderOnTheRight (const EssentialPart &essential, const Scalar &tau, Scalar *workspace) |
template<typename OtherDerived > | |
void | applyOnTheLeft (const EigenBase< OtherDerived > &other) |
template<typename OtherScalar > | |
void | applyOnTheLeft (Index p, Index q, const JacobiRotation< OtherScalar > &j) |
template<typename OtherDerived > | |
void | applyOnTheRight (const EigenBase< OtherDerived > &other) |
template<typename OtherScalar > | |
void | applyOnTheRight (Index p, Index q, const JacobiRotation< OtherScalar > &j) |
ArrayWrapper< Derived > | array () |
const ArrayWrapper< const Derived > | array () const |
const DiagonalWrapper< const Derived > | asDiagonal () const |
const MatrixFunctionReturnValue< Derived > | asinh () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic sine use ArrayBase::asinh . More... | |
const PermutationWrapper< const Derived > | asPermutation () const |
const SkewSymmetricWrapper< const Derived > | asSkewSymmetric () const |
const MatrixFunctionReturnValue< Derived > | atanh () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic cosine use ArrayBase::atanh . More... | |
template<int Options = 0> | |
BDCSVD< PlainObject, Options > | bdcSvd () const |
template<int Options> | |
BDCSVD< typename MatrixBase< Derived >::PlainObject, Options > | bdcSvd () const |
template<int Options = 0> | |
EIGEN_DEPRECATED BDCSVD< PlainObject, Options > | bdcSvd (unsigned int computationOptions) const |
template<int Options> | |
BDCSVD< typename MatrixBase< Derived >::PlainObject, Options > | bdcSvd (unsigned int computationOptions) const |
RealScalar | blueNorm () const |
Matrix< Scalar, 3, 1 > | canonicalEulerAngles (Index a0, Index a1, Index a2) const |
template<typename PermutationIndex = DefaultPermutationIndex> | |
const ColPivHouseholderQR< PlainObject, PermutationIndex > | colPivHouseholderQr () const |
template<typename PermutationIndexType > | |
const ColPivHouseholderQR< typename MatrixBase< Derived >::PlainObject, PermutationIndexType > | colPivHouseholderQr () const |
template<typename PermutationIndex = DefaultPermutationIndex> | |
const CompleteOrthogonalDecomposition< PlainObject, PermutationIndex > | completeOrthogonalDecomposition () const |
template<typename PermutationIndex > | |
const CompleteOrthogonalDecomposition< typename MatrixBase< Derived >::PlainObject, PermutationIndex > | completeOrthogonalDecomposition () const |
template<typename ResultType > | |
void | computeInverseAndDetWithCheck (ResultType &inverse, typename ResultType::Scalar &determinant, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const |
template<typename ResultType > | |
void | computeInverseWithCheck (ResultType &inverse, bool &invertible, const RealScalar &absDeterminantThreshold=NumTraits< Scalar >::dummy_precision()) const |
const MatrixFunctionReturnValue< Derived > | cos () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise cosine use ArrayBase::cos . More... | |
const MatrixFunctionReturnValue< Derived > | cosh () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise hyperbolic cosine use ArrayBase::cosh . More... | |
template<typename OtherDerived > | |
internal::cross_impl< Derived, OtherDerived >::return_type | cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
std::conditional_t< SizeAtCompileTime==2, Scalar, PlainObject > | cross (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
PlainObject | cross3 (const MatrixBase< OtherDerived > &other) const |
template<typename OtherDerived > | |
const SparseMatrixBase< OtherDerived >::template CwiseProductDenseReturnType< Derived >::Type | cwiseProduct (const SparseMatrixBase< OtherDerived > &other) const |
Scalar | determinant () const |
DiagonalReturnType | diagonal () |
template<int Index> | |
Diagonal< Derived, Index > | diagonal () |
const ConstDiagonalReturnType | diagonal () const |
template<int Index> | |
const Diagonal< const Derived, Index > | diagonal () const |
Diagonal< Derived, DynamicIndex > | diagonal (Index index) |
const Diagonal< const Derived, DynamicIndex > | diagonal (Index index) const |
Index | diagonalSize () const |
template<typename OtherDerived > | |
ScalarBinaryOpTraits< typename internal::traits< Derived >::Scalar, typename internal::traits< OtherDerived >::Scalar >::ReturnType | dot (const MatrixBase< OtherDerived > &other) const |
typedef | EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE (ConstStartMinusOne, Scalar, quotient) HNormalizedReturnType |
EigenvaluesReturnType | eigenvalues () const |
Computes the eigenvalues of a matrix. More... | |
EIGEN_DEPRECATED Matrix< Scalar, 3, 1 > | eulerAngles (Index a0, Index a1, Index a2) const |
const MatrixExponentialReturnValue< Derived > | exp () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise exponential use ArrayBase::exp . More... | |
Derived & | forceAlignedAccess () |
const Derived & | forceAlignedAccess () const |
template<bool Enable> | |
std::conditional_t< Enable, ForceAlignedAccess< Derived >, Derived & > | forceAlignedAccessIf () |
template<bool Enable> | |
Derived & | forceAlignedAccessIf () |
template<bool Enable> | |
add_const_on_value_type_t< std::conditional_t< Enable, ForceAlignedAccess< Derived >, Derived & > > | forceAlignedAccessIf () const |
template<bool Enable> | |
const Derived & | forceAlignedAccessIf () const |
template<typename PermutationIndex = DefaultPermutationIndex> | |
const FullPivHouseholderQR< PlainObject, PermutationIndex > | fullPivHouseholderQr () const |
template<typename PermutationIndex > | |
const FullPivHouseholderQR< typename MatrixBase< Derived >::PlainObject, PermutationIndex > | fullPivHouseholderQr () const |
template<typename PermutationIndex = DefaultPermutationIndex> | |
const FullPivLU< PlainObject, PermutationIndex > | fullPivLu () const |
template<typename PermutationIndex > | |
const FullPivLU< typename MatrixBase< Derived >::PlainObject, PermutationIndex > | fullPivLu () const |
const HNormalizedReturnType | hnormalized () const |
homogeneous normalization More... | |
HomogeneousReturnType | homogeneous () const |
const HouseholderQR< PlainObject > | householderQr () const |
RealScalar | hypotNorm () const |
const Inverse< Derived > | inverse () const |
bool | isDiagonal (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isIdentity (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isLowerTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename OtherDerived > | |
bool | isOrthogonal (const MatrixBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isSkewSymmetric (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isUnitary (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isUpperTriangular (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
template<int Options = 0> | |
JacobiSVD< PlainObject, Options > | jacobiSvd () const |
template<int Options> | |
JacobiSVD< typename MatrixBase< Derived >::PlainObject, Options > | jacobiSvd () const |
template<int Options = 0> | |
EIGEN_DEPRECATED JacobiSVD< PlainObject, Options > | jacobiSvd (unsigned int computationOptions) const |
template<int Options> | |
JacobiSVD< typename MatrixBase< Derived >::PlainObject, Options > | jacobiSvd (unsigned int computationOptions) const |
template<typename OtherDerived > | |
const Product< Derived, OtherDerived, LazyProduct > | lazyProduct (const MatrixBase< OtherDerived > &other) const |
const LDLT< PlainObject > | ldlt () const |
const LLT< PlainObject > | llt () const |
const MatrixLogarithmReturnValue< Derived > | log () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise logarithm use ArrayBase::log . More... | |
template<int p> | |
RealScalar | lpNorm () const |
template<typename PermutationIndex = DefaultPermutationIndex> | |
const PartialPivLU< PlainObject, PermutationIndex > | lu () const |
template<typename PermutationIndex > | |
const PartialPivLU< typename MatrixBase< Derived >::PlainObject, PermutationIndex > | lu () const |
template<typename EssentialPart > | |
void | makeHouseholder (EssentialPart &essential, Scalar &tau, RealScalar &beta) const |
void | makeHouseholderInPlace (Scalar &tau, RealScalar &beta) |
MatrixBase< Derived > & | matrix () |
const MatrixBase< Derived > & | matrix () const |
const MatrixFunctionReturnValue< Derived > | matrixFunction (StemFunction f) const |
Helper function for the unsupported MatrixFunctions module. More... | |
NoAlias< Derived, Eigen::MatrixBase > | noalias () |
RealScalar | norm () const |
void | normalize () |
const PlainObject | normalized () const |
template<typename OtherDerived > | |
bool | operator!= (const MatrixBase< OtherDerived > &other) const |
template<typename DiagonalDerived > | |
const Product< Derived, DiagonalDerived, LazyProduct > | operator* (const DiagonalBase< DiagonalDerived > &diagonal) const |
template<typename OtherDerived > | |
const Product< Derived, OtherDerived > | operator* (const MatrixBase< OtherDerived > &other) const |
template<typename SkewDerived > | |
const Product< Derived, SkewDerived, LazyProduct > | operator* (const SkewSymmetricBase< SkewDerived > &skew) const |
template<typename OtherDerived > | |
Derived & | operator*= (const EigenBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator+= (const MatrixBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator-= (const MatrixBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator= (const DenseBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator= (const EigenBase< OtherDerived > &other) |
Derived & | operator= (const MatrixBase &other) |
template<typename OtherDerived > | |
Derived & | operator= (const ReturnByValue< OtherDerived > &other) |
template<typename OtherDerived > | |
bool | operator== (const MatrixBase< OtherDerived > &other) const |
RealScalar | operatorNorm () const |
Computes the L2 operator norm. More... | |
template<typename PermutationIndex = DefaultPermutationIndex> | |
const PartialPivLU< PlainObject, PermutationIndex > | partialPivLu () const |
template<typename PermutationIndex > | |
const PartialPivLU< typename MatrixBase< Derived >::PlainObject, PermutationIndex > | partialPivLu () const |
const MatrixPowerReturnValue< Derived > | pow (const RealScalar &p) const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise power to p use ArrayBase::pow . More... | |
const MatrixComplexPowerReturnValue< Derived > | pow (const std::complex< RealScalar > &p) const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise power to p use ArrayBase::pow . More... | |
template<unsigned int UpLo> | |
SelfAdjointViewReturnType< UpLo >::Type | selfadjointView () |
template<unsigned int UpLo> | |
MatrixBase< Derived >::template SelfAdjointViewReturnType< UpLo >::Type | selfadjointView () |
template<unsigned int UpLo> | |
ConstSelfAdjointViewReturnType< UpLo >::Type | selfadjointView () const |
template<unsigned int UpLo> | |
MatrixBase< Derived >::template ConstSelfAdjointViewReturnType< UpLo >::Type | selfadjointView () const |
Derived & | setIdentity () |
Derived & | setIdentity (Index rows, Index cols) |
Resizes to the given size, and writes the identity expression (not necessarily square) into *this. More... | |
Derived & | setUnit (Index i) |
Set the coefficients of *this to the i-th unit (basis) vector. More... | |
Derived & | setUnit (Index newSize, Index i) |
Resizes to the given newSize, and writes the i-th unit (basis) vector into *this. More... | |
const MatrixFunctionReturnValue< Derived > | sin () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise sine use ArrayBase::sin . More... | |
const MatrixFunctionReturnValue< Derived > | sinh () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise hyperbolic sine use ArrayBase::sinh . More... | |
const SparseView< Derived > | sparseView (const Scalar &m_reference=Scalar(0), const typename NumTraits< Scalar >::Real &m_epsilon=NumTraits< Scalar >::dummy_precision()) const |
const MatrixSquareRootReturnValue< Derived > | sqrt () const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise square root use ArrayBase::sqrt . More... | |
RealScalar | squaredNorm () const |
RealScalar | stableNorm () const |
void | stableNormalize () |
const PlainObject | stableNormalized () const |
Scalar | trace () const |
template<unsigned int Mode> | |
TriangularViewReturnType< Mode >::Type | triangularView () |
template<unsigned int Mode> | |
MatrixBase< Derived >::template TriangularViewReturnType< Mode >::Type | triangularView () |
template<unsigned int Mode> | |
ConstTriangularViewReturnType< Mode >::Type | triangularView () const |
template<unsigned int Mode> | |
MatrixBase< Derived >::template ConstTriangularViewReturnType< Mode >::Type | triangularView () const |
PlainObject | unitOrthogonal (void) const |
Public Member Functions inherited from Eigen::DenseBase< Derived > | |
bool | all () const |
bool | allFinite () const |
bool | any () const |
iterator | begin () |
const_iterator | begin () const |
const_iterator | cbegin () const |
const_iterator | cend () const |
ColwiseReturnType | colwise () |
ConstColwiseReturnType | colwise () const |
Index | count () const |
iterator | end () |
const_iterator | end () const |
EvalReturnType | eval () const |
template<typename Dest > | |
void | evalTo (Dest &) const |
void | fill (const Scalar &value) |
template<unsigned int Added, unsigned int Removed> | |
EIGEN_DEPRECATED const Derived & | flagged () const |
ForceAlignedAccess< Derived > | forceAlignedAccess () |
const ForceAlignedAccess< Derived > | forceAlignedAccess () const |
template<bool Enable> | |
std::conditional_t< Enable, ForceAlignedAccess< Derived >, Derived & > | forceAlignedAccessIf () |
template<bool Enable> | |
const std::conditional_t< Enable, ForceAlignedAccess< Derived >, Derived & > | forceAlignedAccessIf () const |
const WithFormat< Derived > | format (const IOFormat &fmt) const |
bool | hasNaN () const |
EIGEN_CONSTEXPR Index | innerSize () const |
template<typename OtherDerived > | |
bool | isApprox (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isApproxToConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isConstant (const Scalar &value, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename OtherDerived > | |
bool | isMuchSmallerThan (const DenseBase< OtherDerived > &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isMuchSmallerThan (const RealScalar &other, const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename Derived > | |
bool | isMuchSmallerThan (const typename NumTraits< Scalar >::Real &other, const RealScalar &prec) const |
bool | isOnes (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
bool | isZero (const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const |
template<typename OtherDerived > | |
Derived & | lazyAssign (const DenseBase< OtherDerived > &other) |
template<typename OtherDerived > | |
EIGEN_DEPRECATED Derived & | lazyAssign (const DenseBase< OtherDerived > &other) |
template<int p> | |
RealScalar | lpNorm () const |
template<int NaNPropagation> | |
internal::traits< Derived >::Scalar | maxCoeff () const |
internal::traits< Derived >::Scalar | maxCoeff () const |
template<int NaNPropagation, typename IndexType > | |
internal::traits< Derived >::Scalar | maxCoeff (IndexType *index) const |
template<typename IndexType > | |
internal::traits< Derived >::Scalar | maxCoeff (IndexType *index) const |
template<int NaNPropagation, typename IndexType > | |
internal::traits< Derived >::Scalar | maxCoeff (IndexType *row, IndexType *col) const |
template<typename IndexType > | |
internal::traits< Derived >::Scalar | maxCoeff (IndexType *row, IndexType *col) const |
Scalar | mean () const |
template<int NaNPropagation> | |
internal::traits< Derived >::Scalar | minCoeff () const |
internal::traits< Derived >::Scalar | minCoeff () const |
template<int NaNPropagation, typename IndexType > | |
internal::traits< Derived >::Scalar | minCoeff (IndexType *index) const |
template<typename IndexType > | |
internal::traits< Derived >::Scalar | minCoeff (IndexType *index) const |
template<int NaNPropagation, typename IndexType > | |
internal::traits< Derived >::Scalar | minCoeff (IndexType *row, IndexType *col) const |
template<typename IndexType > | |
internal::traits< Derived >::Scalar | minCoeff (IndexType *row, IndexType *col) const |
const NestByValue< Derived > | nestByValue () const |
Derived & | operator*= (const Scalar &other) |
template<typename OtherDerived > | |
Derived & | operator+= (const EigenBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator-= (const EigenBase< OtherDerived > &other) |
Derived & | operator/= (const Scalar &other) |
template<typename OtherDerived > | |
CommaInitializer< Derived > | operator<< (const DenseBase< OtherDerived > &other) |
CommaInitializer< Derived > | operator<< (const Scalar &s) |
Derived & | operator= (const DenseBase &other) |
template<typename OtherDerived > | |
Derived & | operator= (const DenseBase< OtherDerived > &other) |
template<typename OtherDerived > | |
Derived & | operator= (const EigenBase< OtherDerived > &other) |
Copies the generic expression other into *this. More... | |
template<typename OtherDerived > | |
Derived & | operator= (const ReturnByValue< OtherDerived > &func) |
EIGEN_CONSTEXPR Index | outerSize () const |
Scalar | prod () const |
template<typename BinaryOp > | |
Scalar | redux (const BinaryOp &func) const |
template<typename Func > | |
internal::traits< Derived >::Scalar | redux (const Func &func) const |
template<int RowFactor, int ColFactor> | |
const Replicate< Derived, RowFactor, ColFactor > | replicate () const |
const Replicate< Derived, Dynamic, Dynamic > | replicate (Index rowFactor, Index colFactor) const |
void | resize (Index newSize) |
void | resize (Index rows, Index cols) |
ReverseReturnType | reverse () |
ConstReverseReturnType | reverse () const |
void | reverseInPlace () |
RowwiseReturnType | rowwise () |
ConstRowwiseReturnType | rowwise () const |
template<typename ThenDerived , typename ElseDerived > | |
CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ThenDerived >::Scalar, typename DenseBase< ElseDerived >::Scalar, Scalar >, ThenDerived, ElseDerived, Derived > | select (const DenseBase< ThenDerived > &thenMatrix, const DenseBase< ElseDerived > &elseMatrix) const |
template<typename ThenDerived , typename ElseDerived > | |
CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ThenDerived >::Scalar, typename DenseBase< ElseDerived >::Scalar, typename DenseBase< Derived >::Scalar >, ThenDerived, ElseDerived, Derived > | select (const DenseBase< ThenDerived > &thenMatrix, const DenseBase< ElseDerived > &elseMatrix) const |
template<typename ThenDerived > | |
CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ThenDerived >::Scalar, typename DenseBase< ThenDerived >::Scalar, Scalar >, ThenDerived, typename DenseBase< ThenDerived >::ConstantReturnType, Derived > | select (const DenseBase< ThenDerived > &thenMatrix, const typename DenseBase< ThenDerived >::Scalar &elseScalar) const |
template<typename ThenDerived > | |
CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ThenDerived >::Scalar, typename DenseBase< ThenDerived >::Scalar, typename DenseBase< Derived >::Scalar >, ThenDerived, typename DenseBase< ThenDerived >::ConstantReturnType, Derived > | select (const DenseBase< ThenDerived > &thenMatrix, const typename DenseBase< ThenDerived >::Scalar &elseScalar) const |
template<typename ElseDerived > | |
CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ElseDerived >::Scalar, typename DenseBase< ElseDerived >::Scalar, Scalar >, typename DenseBase< ElseDerived >::ConstantReturnType, ElseDerived, Derived > | select (const typename DenseBase< ElseDerived >::Scalar &thenScalar, const DenseBase< ElseDerived > &elseMatrix) const |
template<typename ElseDerived > | |
CwiseTernaryOp< internal::scalar_boolean_select_op< typename DenseBase< ElseDerived >::Scalar, typename DenseBase< ElseDerived >::Scalar, typename DenseBase< Derived >::Scalar >, typename DenseBase< ElseDerived >::ConstantReturnType, ElseDerived, Derived > | select (const typename DenseBase< ElseDerived >::Scalar &thenScalar, const DenseBase< ElseDerived > &elseMatrix) const |
Derived & | setConstant (const Scalar &value) |
Derived & | setEqualSpaced (const Scalar &low, const Scalar &step) |
Derived & | setEqualSpaced (Index size, const Scalar &low, const Scalar &step) |
Derived & | setLinSpaced (const Scalar &low, const Scalar &high) |
Sets a linearly spaced vector. More... | |
Derived & | setLinSpaced (Index size, const Scalar &low, const Scalar &high) |
Sets a linearly spaced vector. More... | |
Derived & | setOnes () |
Derived & | setRandom () |
Derived & | setZero () |
Scalar | sum () const |
template<typename OtherDerived > | |
void | swap (const DenseBase< OtherDerived > &other) |
template<typename OtherDerived > | |
void | swap (PlainObjectBase< OtherDerived > &other) |
Scalar | trace () const |
TransposeReturnType | transpose () |
const ConstTransposeReturnType | transpose () const |
void | transposeInPlace () |
CoeffReturnType | value () const |
template<typename Visitor > | |
void | visit (Visitor &func) const |
Public Member Functions inherited from Eigen::DenseCoeffsBase< Derived, DirectWriteAccessors > | |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | colStride () const EIGEN_NOEXCEPT |
Derived & | derived () |
const Derived & | derived () const |
EIGEN_CONSTEXPR Index | innerStride () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | outerStride () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | rowStride () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | stride () const EIGEN_NOEXCEPT |
Public Member Functions inherited from Eigen::DenseCoeffsBase< Derived, WriteAccessors > | |
Scalar & | coeffRef (Index index) |
Scalar & | coeffRef (Index row, Index col) |
Scalar & | coeffRefByOuterInner (Index outer, Index inner) |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
Derived & | derived () |
const Derived & | derived () const |
Scalar & | operator() (Index index) |
Scalar & | operator() (Index row, Index col) |
Scalar & | operator[] (Index index) |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
Scalar & | w () |
Scalar & | x () |
Scalar & | y () |
Scalar & | z () |
Public Member Functions inherited from Eigen::DenseCoeffsBase< Derived, ReadOnlyAccessors > | |
CoeffReturnType | coeff (Index index) const |
CoeffReturnType | coeff (Index row, Index col) const |
CoeffReturnType | coeffByOuterInner (Index outer, Index inner) const |
Index | colIndexByOuterInner (Index outer, Index inner) const |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
Derived & | derived () |
const Derived & | derived () const |
CoeffReturnType | operator() (Index index) const |
CoeffReturnType | operator() (Index row, Index col) const |
CoeffReturnType | operator[] (Index index) const |
template<int LoadMode> | |
PacketReturnType | packet (Index index) const |
template<int LoadMode> | |
PacketReturnType | packet (Index row, Index col) const |
template<int LoadMode> | |
PacketReturnType | packetByOuterInner (Index outer, Index inner) const |
Index | rowIndexByOuterInner (Index outer, Index inner) const |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
CoeffReturnType | w () const |
CoeffReturnType | x () const |
CoeffReturnType | y () const |
CoeffReturnType | z () const |
Public Member Functions inherited from Eigen::EigenBase< Derived > | |
template<typename Dest > | |
void | addTo (Dest &dst) const |
template<typename Dest > | |
void | applyThisOnTheLeft (Dest &dst) const |
template<typename Dest > | |
void | applyThisOnTheRight (Dest &dst) const |
EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
Derived & | const_cast_derived () const |
const Derived & | const_derived () const |
Derived & | derived () |
const Derived & | derived () const |
template<typename Dest > | |
void | evalTo (Dest &dst) const |
EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
template<typename Dest > | |
void | subTo (Dest &dst) const |
Static Public Member Functions | |
static const IdentityReturnType | Identity () |
static const IdentityReturnType | Identity (Index rows, Index cols) |
static const BasisReturnType | Unit (Index i) |
static const BasisReturnType | Unit (Index size, Index i) |
static const BasisReturnType | UnitW () |
static const BasisReturnType | UnitX () |
static const BasisReturnType | UnitY () |
static const BasisReturnType | UnitZ () |
Static Public Member Functions inherited from Eigen::DenseBase< Derived > | |
static const ConstantReturnType | Constant (const Scalar &value) |
static const ConstantReturnType | Constant (Index rows, Index cols, const Scalar &value) |
static const ConstantReturnType | Constant (Index size, const Scalar &value) |
static const RandomAccessEqualSpacedReturnType | EqualSpaced (const Scalar &low, const Scalar &step) |
static const RandomAccessEqualSpacedReturnType | EqualSpaced (Index size, const Scalar &low, const Scalar &step) |
static const RandomAccessLinSpacedReturnType | LinSpaced (const Scalar &low, const Scalar &high) |
Sets a linearly spaced vector. More... | |
static const RandomAccessLinSpacedReturnType | LinSpaced (Index size, const Scalar &low, const Scalar &high) |
Sets a linearly spaced vector. More... | |
static EIGEN_DEPRECATED const RandomAccessLinSpacedReturnType | LinSpaced (Sequential_t, const Scalar &low, const Scalar &high) |
static EIGEN_DEPRECATED const RandomAccessLinSpacedReturnType | LinSpaced (Sequential_t, Index size, const Scalar &low, const Scalar &high) |
template<typename CustomNullaryOp > | |
static const CwiseNullaryOp< CustomNullaryOp, PlainObject > | NullaryExpr (const CustomNullaryOp &func) |
template<typename CustomNullaryOp > | |
static const CwiseNullaryOp< CustomNullaryOp, PlainObject > | NullaryExpr (Index rows, Index cols, const CustomNullaryOp &func) |
template<typename CustomNullaryOp > | |
static const CwiseNullaryOp< CustomNullaryOp, PlainObject > | NullaryExpr (Index size, const CustomNullaryOp &func) |
static const ConstantReturnType | Ones () |
static const ConstantReturnType | Ones (Index rows, Index cols) |
static const ConstantReturnType | Ones (Index size) |
static const RandomReturnType | Random () |
static const RandomReturnType | Random (Index rows, Index cols) |
static const RandomReturnType | Random (Index size) |
static const ConstantReturnType | Zero () |
static const ConstantReturnType | Zero (Index rows, Index cols) |
static const ConstantReturnType | Zero (Index size) |
Protected Member Functions | |
template<typename OtherDerived > | |
Derived & | operator+= (const ArrayBase< OtherDerived > &) |
template<typename OtherDerived > | |
Derived & | operator-= (const ArrayBase< OtherDerived > &) |
Protected Member Functions inherited from Eigen::DenseBase< Derived > | |
constexpr | DenseBase () |
Protected Member Functions inherited from Eigen::DenseCoeffsBase< Derived, ReadOnlyAccessors > | |
void | coeffRef () |
void | coeffRefByOuterInner () |
void | colStride () |
void | copyCoeff () |
void | copyCoeffByOuterInner () |
void | copyPacket () |
void | copyPacketByOuterInner () |
void | innerStride () |
void | outerStride () |
void | rowStride () |
void | stride () |
void | writePacket () |
void | writePacketByOuterInner () |
Private Member Functions | |
template<typename OtherDerived > | |
MatrixBase (const MatrixBase< OtherDerived > &) | |
MatrixBase (int) | |
MatrixBase (int, int) | |
Additional Inherited Members | |
Related Functions inherited from Eigen::DenseBase< Derived > | |
template<typename Derived > | |
std::ostream & | operator<< (std::ostream &s, const DenseBase< Derived > &m) |
Base class for all dense matrices, vectors, and expressions.
This class is the base that is inherited by all matrix, vector, and related expression types. Most of the Eigen API is contained in this class, and its base classes. Other important classes for the Eigen API are Matrix, and VectorwiseOp.
Note that some methods are defined in other modules such as the LU module LU module for all functions related to matrix inversions.
Derived | is the derived type, e.g. a matrix type, or an expression, etc. |
When writing a function taking Eigen objects as argument, if you want your function to take as argument any matrix, vector, or expression, just let it take a MatrixBase argument. As an example, here is a function printFirstRow which, given a matrix, vector, or expression x, prints the first row of x.
This class can be extended with the help of the plugin mechanism described on the page Extending MatrixBase (and other classes) by defining the preprocessor symbol EIGEN_MATRIXBASE_PLUGIN
.
Definition at line 50 of file MatrixBase.h.
typedef Diagonal<const Derived> Eigen::MatrixBase< Derived >::ConstDiagonalReturnType |
Definition at line 216 of file MatrixBase.h.
typedef Block<const Derived, internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1, internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> Eigen::MatrixBase< Derived >::ConstStartMinusOne |
Definition at line 420 of file MatrixBase.h.
typedef Diagonal<Derived> Eigen::MatrixBase< Derived >::DiagonalReturnType |
Definition at line 212 of file MatrixBase.h.
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> Eigen::MatrixBase< Derived >::HomogeneousReturnType |
Definition at line 411 of file MatrixBase.h.
typedef Base::PlainObject Eigen::MatrixBase< Derived >::PlainObject |
Definition at line 106 of file MatrixBase.h.
typedef internal::stem_function<Scalar>::type Eigen::MatrixBase< Derived >::StemFunction |
Definition at line 464 of file MatrixBase.h.
anonymous enum |
Enumerator | |
---|---|
HomogeneousReturnTypeDirection |
Definition at line 409 of file MatrixBase.h.
anonymous enum |
|
explicitprivate |
|
private |
|
explicitprivate |
const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::acosh | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic cosine use ArrayBase::acosh .
*this
.
|
inline |
Example:
Output:
Here is the 2x2 complex matrix m: (-0.211,0.68) (-0.605,0.823) (0.597,0.566) (0.536,-0.33) Here is the adjoint of m: (-0.211,-0.68) (0.597,-0.566) (-0.605,-0.823) (0.536,0.33)
Definition at line 223 of file Transpose.h.
|
inline |
"in place" adjoint implementation This is the "in place" version of adjoint(): it replaces *this
by its own transpose. Thus, doing
has the same effect on m as doing
and is faster and also safer because in the latter line of code, forgetting the eval() results in a bug caused by aliasing.
Notice however that this method is only useful if you want to replace a matrix by its own adjoint. If you just need the adjoint of a matrix, use adjoint().
*this
must be a resizable matrix. This excludes (non-square) fixed-size matrices, block-expressions and maps.Definition at line 377 of file Transpose.h.
void Eigen::MatrixBase< Derived >::applyHouseholderOnTheLeft | ( | const EssentialPart & | essential, |
const Scalar & | tau, | ||
Scalar * | workspace | ||
) |
Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the left to a vector or matrix.
On input:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
workspace | a pointer to working space with at least this->cols() entries |
Definition at line 118 of file Householder.h.
void Eigen::MatrixBase< Derived >::applyHouseholderOnTheRight | ( | const EssentialPart & | essential, |
const Scalar & | tau, | ||
Scalar * | workspace | ||
) |
Apply the elementary reflector H given by \( H = I - tau v v^*\) with \( v^T = [1 essential^T] \) from the right to a vector or matrix.
On input:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
workspace | a pointer to working space with at least this->rows() entries |
Definition at line 156 of file Householder.h.
|
inline |
replaces *this
by other * *this
.
Example:
Output:
At start, A = 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 After applyOnTheLeft, A = -0.211 0.823 0.536 0.566 -0.605 -0.444 0.68 0.597 -0.33
Definition at line 544 of file MatrixBase.h.
|
inline |
This is defined in the Jacobi module.
Applies the rotation in the plane j to the rows p and q of *this
, i.e., it computes B = J * B, with \( B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \).
Definition at line 297 of file Jacobi.h.
|
inline |
replaces *this
by *this
* other. It is equivalent to MatrixBase::operator*=().
Example:
Output:
At start, A = 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 After A *= B, A = -0.33 0.68 0.597 0.536 -0.211 0.823 -0.444 0.566 -0.605 After applyOnTheRight, A = 0.597 -0.33 0.68 0.823 0.536 -0.211 -0.605 -0.444 0.566
Definition at line 532 of file MatrixBase.h.
|
inline |
Definition at line 324 of file MatrixBase.h.
|
inline |
Definition at line 327 of file MatrixBase.h.
|
inline |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Example:
Output:
2 0 0 0 5 0 0 0 6
Definition at line 384 of file DiagonalMatrix.h.
const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::asinh | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic sine use ArrayBase::asinh .
*this
. const PermutationWrapper< const Derived > Eigen::MatrixBase< Derived >::asPermutation |
Definition at line 594 of file PermutationMatrix.h.
|
inline |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Definition at line 349 of file SkewSymmetricMatrix3.h.
const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::atanh | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise inverse hyperbolic cosine use ArrayBase::atanh .
*this
.
|
inline |
BDCSVD<typename MatrixBase<Derived>::PlainObject, Options> Eigen::MatrixBase< Derived >::bdcSvd | ( | ) | const |
|
inline |
BDCSVD<typename MatrixBase<Derived>::PlainObject, Options> Eigen::MatrixBase< Derived >::bdcSvd | ( | unsigned int | computationOptions | ) | const |
|
inline |
*this
using the Blue's algorithm. A Portable Fortran Program to Find the Euclidean Norm of a Vector, ACM TOMS, Vol 4, Issue 1, 1978.For architecture/scalar types without vectorization, this version is much faster than stableNorm(). Otherwise the stableNorm() is faster.
Definition at line 231 of file StableNorm.h.
|
inline |
const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject, PermutationIndexType> Eigen::MatrixBase< Derived >::colPivHouseholderQr | ( | ) | const |
*this
.Definition at line 673 of file ColPivHouseholderQR.h.
|
inline |
const CompleteOrthogonalDecomposition<typename MatrixBase<Derived>::PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::completeOrthogonalDecomposition | ( | ) | const |
*this
.Definition at line 645 of file CompleteOrthogonalDecomposition.h.
|
inline |
This is defined in the LU module.
Computation of matrix inverse and determinant, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
inverse | Reference to the matrix in which to store the inverse. |
determinant | Reference to the variable in which to store the determinant. |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Output:
Here is the matrix m: 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 Its determinant is 0.209 It is invertible, and its inverse is: -0.199 2.23 2.84 1.01 -0.555 -1.42 -1.62 3.59 3.29
Definition at line 379 of file InverseImpl.h.
|
inline |
This is defined in the LU module.
Computation of matrix inverse, with invertibility check.
This is only for fixed-size square matrices of size up to 4x4.
Notice that it will trigger a copy of input matrix when trying to do the inverse in place.
inverse | Reference to the matrix in which to store the inverse. |
invertible | Reference to the bool variable in which to store whether the matrix is invertible. |
absDeterminantThreshold | Optional parameter controlling the invertibility check. The matrix will be declared invertible if the absolute value of its determinant is greater than this threshold. |
Example:
Output:
Here is the matrix m: 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 It is invertible, and its inverse is: -0.199 2.23 2.84 1.01 -0.555 -1.42 -1.62 3.59 3.29
Definition at line 420 of file InverseImpl.h.
const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::cos | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise cosine use ArrayBase::cos .
*this
. const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::cosh | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise hyperbolic cosine use ArrayBase::cosh .
*this
.
|
inline |
|
inline |
Definition at line 457 of file MatrixBase.h.
|
inline |
This is defined in the LU module.
Definition at line 110 of file Determinant.h.
|
inline |
*this
*this
is not required to be square.
Example:
Output:
Here is the matrix m: 7 6 -3 -2 9 6 6 -6 -5 Here are the coefficients on the main diagonal of m: 7 9 -5
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m: 9 1 9 6 6
Definition at line 189 of file Diagonal.h.
Diagonal<Derived, Index> Eigen::MatrixBase< Derived >::diagonal | ( | ) |
|
inline |
This is the const version of diagonal().
This is the const version of diagonal<int>().
Definition at line 198 of file Diagonal.h.
const Diagonal<const Derived, Index> Eigen::MatrixBase< Derived >::diagonal | ( | ) | const |
|
inline |
*this
*this
is not required to be square.
The template parameter DiagIndex represent a super diagonal if DiagIndex > 0 and a sub diagonal otherwise. DiagIndex == 0 is equivalent to the main diagonal.
Example:
Output:
Here is the matrix m: 7 9 -5 -3 -2 -6 1 0 6 -3 0 9 6 6 3 9 Here are the coefficients on the 1st super-diagonal and 2nd sub-diagonal of m: 9 1 9 6 6
Definition at line 216 of file Diagonal.h.
|
inline |
This is the const version of diagonal(Index).
Definition at line 224 of file Diagonal.h.
|
inline |
Definition at line 104 of file MatrixBase.h.
|
inline |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Definition at line 69 of file Dot.h.
typedef Eigen::MatrixBase< Derived >::EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE | ( | ConstStartMinusOne | , |
Scalar | , | ||
quotient | |||
) |
|
inline |
Computes the eigenvalues of a matrix.
This is defined in the Eigenvalues module.
This function computes the eigenvalues with the help of the EigenSolver class (for real matrices) or the ComplexEigenSolver class (for complex matrices).
The eigenvalues are repeated according to their algebraic multiplicity, so there are as many eigenvalues as rows in the matrix.
The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
Output:
The eigenvalues of the 3x3 matrix of ones are: (-5.31e-17,0) (3,0) (0,0)
Definition at line 69 of file MatrixBaseEigenvalues.h.
const MatrixExponentialReturnValue<Derived> Eigen::MatrixBase< Derived >::exp | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise exponential use ArrayBase::exp .
*this
.
|
inline |
Definition at line 311 of file MatrixBase.h.
|
inline |
Definition at line 310 of file MatrixBase.h.
|
inline |
Definition at line 145 of file ForceAlignedAccess.h.
|
inline |
Definition at line 313 of file MatrixBase.h.
|
inline |
Definition at line 134 of file ForceAlignedAccess.h.
|
inline |
Definition at line 312 of file MatrixBase.h.
|
inline |
const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject, PermutationIndex> Eigen::MatrixBase< Derived >::fullPivHouseholderQr | ( | ) | const |
*this
.Definition at line 731 of file FullPivHouseholderQR.h.
|
inline |
|
inline |
This is defined in the LU module.
*this
.Definition at line 870 of file FullPivLU.h.
|
inline |
*this
.Definition at line 527 of file HouseholderQR.h.
|
inline |
*this
avoiding undeflow and overflow. This version use a concatenation of hypot() calls, and it is very slow.Definition at line 243 of file StableNorm.h.
|
inlinestatic |
This variant is only for fixed-size MatrixBase types. For dynamic-size types, you need to use the variant taking size arguments.
Example:
Output:
1 0 0 0 0 1 0 0 0 0 1 0
Definition at line 828 of file CwiseNullaryOp.h.
|
inlinestatic |
The parameters rows and cols are the number of rows and of columns of the returned matrix. Must be compatible with this MatrixBase type.
This variant is meant to be used for dynamic-size matrix types. For fixed-size types, it is redundant to pass rows and cols as arguments, so Identity() should be used instead.
Example:
Output:
1 0 0 0 1 0 0 0 1 0 0 0
Definition at line 811 of file CwiseNullaryOp.h.
|
inline |
This is defined in the LU module.
For small fixed sizes up to 4x4, this method uses cofactors. In the general case, this method uses class PartialPivLU.
Here is the matrix m: 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 Its inverse is: -0.199 2.23 2.84 1.01 -0.555 -1.42 -1.62 3.59 3.29
Definition at line 350 of file InverseImpl.h.
bool Eigen::MatrixBase< Derived >::isDiagonal | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Example:
Output:
Here's the matrix m: 1e+04 0 1 0 1e+04 0 0 0 1e+04 m.isDiagonal() returns: 0 m.isDiagonal(1e-3) returns: 1
Definition at line 398 of file DiagonalMatrix.h.
bool Eigen::MatrixBase< Derived >::isIdentity | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Example:
Output:
Here's the matrix m: 1 0 0.0001 0 1 0 0 0 1 m.isIdentity() returns: 0 m.isIdentity(1e-3) returns: 1
Definition at line 844 of file CwiseNullaryOp.h.
bool Eigen::MatrixBase< Derived >::isLowerTriangular | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Definition at line 692 of file TriangularMatrix.h.
bool Eigen::MatrixBase< Derived >::isOrthogonal | ( | const MatrixBase< OtherDerived > & | other, |
const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() |
||
) | const |
Example:
Output:
Here's the vector v: 1 0 0 Here's the vector w: 0.0001 0 1 v.isOrthogonal(w) returns: 0 v.isOrthogonal(w,1e-3) returns: 1
Definition at line 280 of file Dot.h.
bool Eigen::MatrixBase< Derived >::isSkewSymmetric | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Definition at line 358 of file SkewSymmetricMatrix3.h.
bool Eigen::MatrixBase< Derived >::isUnitary | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
m.isUnitary()
returns true if and only if the columns (equivalently, the rows) of m form an orthonormal basis.Example:
Output:
Here's the matrix m: 1 0 0.0001 0 1 0 0 0 1 m.isUnitary() returns: 0 m.isUnitary(1e-3) returns: 1
Definition at line 300 of file Dot.h.
bool Eigen::MatrixBase< Derived >::isUpperTriangular | ( | const RealScalar & | prec = NumTraits<Scalar>::dummy_precision() | ) | const |
Definition at line 667 of file TriangularMatrix.h.
|
inline |
JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> Eigen::MatrixBase< Derived >::jacobiSvd | ( | ) | const |
This is defined in the SVD module.
*this
computed by two-sided Jacobi transformations.Definition at line 830 of file JacobiSVD.h.
|
inline |
JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> Eigen::MatrixBase< Derived >::jacobiSvd | ( | unsigned int | computationOptions | ) | const |
Definition at line 836 of file JacobiSVD.h.
|
inline |
*this
and other without implicit evaluation.The returned product will behave like any other expressions: the coefficients of the product will be computed once at a time as requested. This might be useful in some extremely rare cases when only a small and no coherent fraction of the result's coefficients have to be computed.
Definition at line 444 of file GeneralProduct.h.
|
inline |
This is defined in the Cholesky module.
*this
|
inline |
This is defined in the Cholesky module.
*this
const MatrixLogarithmReturnValue<Derived> Eigen::MatrixBase< Derived >::log | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise logarithm use ArrayBase::log .
*this
. MatrixBase< Derived >::RealScalar Eigen::MatrixBase< Derived >::lpNorm |
*this
, that is, returns the p-th root of the sum of the p-th powers of the absolute values of the coefficients of *this
. If p is the special value Eigen::Infinity, this function returns the \( \ell^\infty \) norm, that is the maximum of the absolute values of the coefficients of *this
.In all cases, if *this
is empty, then the value 0 is returned.
*this
is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \(\infty\)-norm matrix operator norms using partial reductions .
|
inline |
|
inline |
This is defined in the LU module.
Synonym of partialPivLu().
*this
.Definition at line 616 of file PartialPivLU.h.
void Eigen::MatrixBase< Derived >::makeHouseholder | ( | EssentialPart & | essential, |
Scalar & | tau, | ||
RealScalar & | beta | ||
) | const |
Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \)
On output:
essential | the essential part of the vector v |
tau | the scaling factor of the Householder transformation |
beta | the result of H * *this |
Definition at line 69 of file Householder.h.
void Eigen::MatrixBase< Derived >::makeHouseholderInPlace | ( | Scalar & | tau, |
RealScalar & | beta | ||
) |
Computes the elementary reflector H such that: \( H *this = [ beta 0 ... 0]^T \) where the transformation H is: \( H = I - tau v v^*\) and the vector v is: \( v^T = [1 essential^T] \)
The essential part of the vector v
is stored in *this.
On output:
tau | the scaling factor of the Householder transformation |
beta | the result of H * *this |
Definition at line 45 of file Householder.h.
|
inline |
Definition at line 319 of file MatrixBase.h.
|
inline |
Definition at line 320 of file MatrixBase.h.
const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::matrixFunction | ( | StemFunction | f | ) | const |
Helper function for the unsupported MatrixFunctions module.
NoAlias< Derived, MatrixBase > Eigen::MatrixBase< Derived >::noalias |
*this
with an operator= assuming no aliasing between *this
and the source expression.More precisely, noalias() allows to bypass the EvalBeforeAssignBit flag. Currently, even though several expressions may alias, only product expressions have this flag. Therefore, noalias() is only useful when the source expression contains a matrix product.
Here are some examples where noalias is useful:
On the other hand the following example will lead to a wrong result:
because the result matrix A is also an operand of the matrix product. Therefore, there is no alternative than evaluating A * B in a temporary, that is the default behavior when you write:
|
inline |
*this
, and for matrices the Frobenius norm. In both cases, it consists in the square root of the sum of the square of all the matrix entries. For vectors, this is also equals to the square root of the dot product of *this
with itself.
|
inline |
Normalizes the vector, i.e. divides it by its own norm.
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
*this
is left unchanged.
|
inline |
*this
by its own norm.This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
|
inline |
*this
and other are not exactly equal to each other. Definition at line 303 of file MatrixBase.h.
|
inline |
*this
by the diagonal matrix diagonal. Definition at line 23 of file DiagonalProduct.h.
|
inline |
Implementation of matrix base methods
*this
and other.Definition at line 401 of file GeneralProduct.h.
|
inline |
*this
by the skew symmetric matrix \skew. Definition at line 369 of file SkewSymmetricMatrix3.h.
|
inline |
Implementation of matrix base methods replaces *this
by *this
* other.
*this
Example:
Output:
At start, A = 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 After A *= B, A = -0.33 0.68 0.597 0.536 -0.211 0.823 -0.444 0.566 -0.605 After applyOnTheRight, A = 0.597 -0.33 0.68 0.823 0.536 -0.211 -0.605 -0.444 0.566
Definition at line 519 of file MatrixBase.h.
|
inlineprotected |
Definition at line 497 of file MatrixBase.h.
|
inline |
replaces *this
by *this
+ other.
*this
Definition at line 177 of file CwiseBinaryOp.h.
|
inlineprotected |
Definition at line 500 of file MatrixBase.h.
|
inline |
replaces *this
by *this
- other.
*this
Definition at line 164 of file CwiseBinaryOp.h.
|
inline |
|
inline |
|
inline |
Special case of the template operator=, in order to prevent the compiler from generating a default operator= (issue hit with g++ 4.1)
|
inline |
|
inline |
*this
and other are all exactly equal. Definition at line 295 of file MatrixBase.h.
|
inline |
Computes the L2 operator norm.
This is defined in the Eigenvalues module.
This function computes the L2 operator norm of a matrix, which is also known as the spectral norm. The norm of a matrix \( A \) is defined to be
\[ \|A\|_2 = \max_x \frac{\|Ax\|_2}{\|x\|_2} \]
where the maximum is over all vectors and the norm on the right is the Euclidean vector norm. The norm equals the largest singular value, which is the square root of the largest eigenvalue of the positive semi-definite matrix \( A^*A \).
The current implementation uses the eigenvalues of \( A^*A \), as computed by SelfAdjointView::eigenvalues(), to compute the operator norm of a matrix. The SelfAdjointView class provides a better algorithm for selfadjoint matrices.
Example:
Output:
The operator norm of the 3x3 matrix of ones is 3
Definition at line 122 of file MatrixBaseEigenvalues.h.
|
inline |
|
inline |
This is defined in the LU module.
*this
.Definition at line 600 of file PartialPivLU.h.
const MatrixPowerReturnValue<Derived> Eigen::MatrixBase< Derived >::pow | ( | const RealScalar & | p | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise power to p
use ArrayBase::pow .
p
of *this
. const MatrixComplexPowerReturnValue<Derived> Eigen::MatrixBase< Derived >::pow | ( | const std::complex< RealScalar > & | p | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise power to p
use ArrayBase::pow .
p
of *this
. SelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView | ( | ) |
MatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView | ( | ) |
The parameter UpLo can be either Upper
or Lower
Example:
Output:
Here is the matrix m: 7 6 -3 -2 9 6 6 -6 -5 Here is the symmetric matrix extracted from the upper part of m: 7 6 -3 6 9 6 -3 6 -5 Here is the symmetric matrix extracted from the lower part of m: 7 -2 6 -2 9 -6 6 -6 -5
Definition at line 358 of file SelfAdjointView.h.
ConstSelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView | ( | ) | const |
MatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type Eigen::MatrixBase< Derived >::selfadjointView | ( | ) | const |
Implementation of MatrixBase methods This is the const version of MatrixBase::selfadjointView()
Definition at line 341 of file SelfAdjointView.h.
|
inline |
Writes the identity expression (not necessarily square) into *this.
Example:
Output:
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
Definition at line 902 of file CwiseNullaryOp.h.
|
inline |
Resizes to the given size, and writes the identity expression (not necessarily square) into *this.
rows | the new number of rows |
cols | the new number of columns |
Example:
Output:
1 0 0 0 1 0 0 0 1
Definition at line 918 of file CwiseNullaryOp.h.
|
inline |
Set the coefficients of *this
to the i-th unit (basis) vector.
i | index of the unique coefficient to be set to 1 |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Definition at line 1001 of file CwiseNullaryOp.h.
|
inline |
Resizes to the given newSize, and writes the i-th unit (basis) vector into *this.
newSize | the new size of the vector |
i | index of the unique coefficient to be set to 1 |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Definition at line 1020 of file CwiseNullaryOp.h.
const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::sin | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise sine use ArrayBase::sin .
*this
. const MatrixFunctionReturnValue<Derived> Eigen::MatrixBase< Derived >::sinh | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise hyperbolic sine use ArrayBase::sinh .
*this
. const MatrixSquareRootReturnValue<Derived> Eigen::MatrixBase< Derived >::sqrt | ( | ) | const |
This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise square root use ArrayBase::sqrt .
*this
.
|
inline |
*this
, and for matrices the squared Frobenius norm. In both cases, it consists in the sum of the square of all the matrix entries. For vectors, this is also equals to the dot product of *this
with itself.
|
inline |
*this
avoiding underflow and overflow. This version use a blockwise two passes algorithm: 1 - find the absolute largest coefficient s
2 - compute \( s \Vert \frac{*this}{s} \Vert \) in a standard wayFor architecture/scalar types supporting vectorization, this version is faster than blueNorm(). Otherwise the blueNorm() is much faster.
Definition at line 215 of file StableNorm.h.
|
inline |
Normalizes the vector while avoid underflow and overflow
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
This method is analogue to the normalize() method, but it reduces the risk of underflow and overflow when computing the norm.
*this
is left unchanged.Definition at line 189 of file Dot.h.
|
inline |
*this
by its own norm while avoiding underflow and overflow.This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
This method is analogue to the normalized() method, but it reduces the risk of underflow and overflow when computing the norm.
Definition at line 165 of file Dot.h.
|
inline |
*this
, i.e. the sum of the coefficients on the main diagonal.*this
can be any matrix, not necessarily square.
TriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView | ( | ) |
MatrixBase<Derived>::template TriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView | ( | ) |
Implementation of TriangularView methods Implementation of MatrixBase methods
The parameter Mode can have the following values: Upper
, StrictlyUpper
, UnitUpper
, Lower
, StrictlyLower
, UnitLower
.
Example:
Output:
Here is the matrix m: 7 6 -3 -2 9 6 6 -6 -5 Here is the upper-triangular matrix extracted from m: 7 6 -3 0 9 6 0 0 -5 Here is the strictly-upper-triangular matrix extracted from m: 0 6 -3 0 0 6 0 0 0 Here is the unit-lower-triangular matrix extracted from m: 1 0 0 -2 1 0 6 -6 1
Definition at line 646 of file TriangularMatrix.h.
ConstTriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView | ( | ) | const |
MatrixBase<Derived>::template ConstTriangularViewReturnType<Mode>::Type Eigen::MatrixBase< Derived >::triangularView | ( | ) | const |
This is the const version of MatrixBase::triangularView()
Definition at line 656 of file TriangularMatrix.h.
|
inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
This variant is for fixed-size vector only.
Definition at line 946 of file CwiseNullaryOp.h.
|
inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Definition at line 931 of file CwiseNullaryOp.h.
|
inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Definition at line 989 of file CwiseNullaryOp.h.
|
inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Definition at line 959 of file CwiseNullaryOp.h.
|
inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Definition at line 969 of file CwiseNullaryOp.h.
|
inlinestatic |
This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.
Definition at line 979 of file CwiseNullaryOp.h.