EulerAngles.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2023 Juraj Oršulić, University of Zagreb <juraj.orsulic@fer.hr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_EULERANGLES_H
12 #define EIGEN_EULERANGLES_H
13 
14 #include "./InternalHeaderCheck.h"
15 
16 namespace Eigen {
17 
41 template<typename Derived>
44 {
45  /* Implemented from Graphics Gems IV */
47 
49 
50  const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1;
51  const Index i = a0;
52  const Index j = (a0 + 1 + odd) % 3;
53  const Index k = (a0 + 2 - odd) % 3;
54 
55  if (a0 == a2)
56  {
57  // Proper Euler angles (same first and last axis).
58  // The i, j, k indices enable addressing the input matrix as the XYX archetype matrix (see Graphics Gems IV),
59  // where e.g. coeff(k, i) means third column, first row in the XYX archetype matrix:
60  // c2 s2s1 s2c1
61  // s2s3 -c2s1s3 + c1c3 -c2c1s3 - s1c3
62  // -s2c3 c2s1c3 + c1s3 c2c1c3 - s1s3
63 
64  // Note: s2 is always positive.
65  Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
66  if (odd)
67  {
68  res[0] = numext::atan2(coeff(j, i), coeff(k, i));
69  // s2 is always positive, so res[1] will be within the canonical [0, pi] range
70  res[1] = numext::atan2(s2, coeff(i, i));
71  }
72  else
73  {
74  // In the !odd case, signs of all three angles are flipped at the very end. To keep the solution within the canonical range,
75  // we flip the solution and make res[1] always negative here (since s2 is always positive, -atan2(s2, c2) will always be negative).
76  // The final flip at the end due to !odd will thus make res[1] positive and canonical.
77  // NB: in the general case, there are two correct solutions, but only one is canonical. For proper Euler angles,
78  // flipping from one solution to the other involves flipping the sign of the second angle res[1] and adding/subtracting pi
79  // to the first and third angles. The addition/subtraction of pi to the first angle res[0] is handled here by flipping
80  // the signs of arguments to atan2, while the calculation of the third angle does not need special adjustment since
81  // it uses the adjusted res[0] as the input and produces a correct result.
82  res[0] = numext::atan2(-coeff(j, i), -coeff(k, i));
83  res[1] = -numext::atan2(s2, coeff(i, i));
84  }
85 
86  // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
87  // we can compute their respective rotation, and apply its inverse to M. Since the result must
88  // be a rotation around x, we have:
89  //
90  // c2 s1.s2 c1.s2 1 0 0
91  // 0 c1 -s1 * M = 0 c3 s3
92  // -s2 s1.c2 c1.c2 0 -s3 c3
93  //
94  // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
95 
96  Scalar s1 = numext::sin(res[0]);
97  Scalar c1 = numext::cos(res[0]);
98  res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j));
99  }
100  else
101  {
102  // Tait-Bryan angles (all three axes are different; typically used for yaw-pitch-roll calculations).
103  // The i, j, k indices enable addressing the input matrix as the XYZ archetype matrix (see Graphics Gems IV),
104  // where e.g. coeff(k, i) means third column, first row in the XYZ archetype matrix:
105  // c2c3 s2s1c3 - c1s3 s2c1c3 + s1s3
106  // c2s3 s2s1s3 + c1c3 s2c1s3 - s1c3
107  // -s2 c2s1 c2c1
108 
109  res[0] = numext::atan2(coeff(j, k), coeff(k, k));
110 
111  Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j));
112  // c2 is always positive, so the following atan2 will always return a result in the correct canonical middle angle range [-pi/2, pi/2]
113  res[1] = numext::atan2(-coeff(i, k), c2);
114 
115  Scalar s1 = numext::sin(res[0]);
116  Scalar c1 = numext::cos(res[0]);
117  res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j));
118  }
119  if (!odd)
120  {
121  res = -res;
122  }
123 
124  return res;
125 }
126 
137 template<typename Derived>
140 {
141  /* Implemented from Graphics Gems IV */
143 
145 
146  const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1;
147  const Index i = a0;
148  const Index j = (a0 + 1 + odd) % 3;
149  const Index k = (a0 + 2 - odd) % 3;
150 
151  if (a0 == a2)
152  {
153  res[0] = numext::atan2(coeff(j, i), coeff(k, i));
154  if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0)))
155  {
156  if (res[0] > Scalar(0))
157  {
158  res[0] -= Scalar(EIGEN_PI);
159  }
160  else
161  {
162  res[0] += Scalar(EIGEN_PI);
163  }
164 
165  Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
166  res[1] = -numext::atan2(s2, coeff(i, i));
167  }
168  else
169  {
170  Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
171  res[1] = numext::atan2(s2, coeff(i, i));
172  }
173 
174  // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
175  // we can compute their respective rotation, and apply its inverse to M. Since the result must
176  // be a rotation around x, we have:
177  //
178  // c2 s1.s2 c1.s2 1 0 0
179  // 0 c1 -s1 * M = 0 c3 s3
180  // -s2 s1.c2 c1.c2 0 -s3 c3
181  //
182  // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
183 
184  Scalar s1 = numext::sin(res[0]);
185  Scalar c1 = numext::cos(res[0]);
186  res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j));
187  }
188  else
189  {
190  res[0] = numext::atan2(coeff(j, k), coeff(k, k));
191  Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j));
192  if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0)))
193  {
194  if (res[0] > Scalar(0))
195  {
196  res[0] -= Scalar(EIGEN_PI);
197  }
198  else
199  {
200  res[0] += Scalar(EIGEN_PI);
201  }
202  res[1] = numext::atan2(-coeff(i, k), -c2);
203  }
204  else
205  {
206  res[1] = numext::atan2(-coeff(i, k), c2);
207  }
208  Scalar s1 = numext::sin(res[0]);
209  Scalar c1 = numext::cos(res[0]);
210  res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j));
211  }
212  if (!odd)
213  {
214  res = -res;
215  }
216 
217  return res;
218 }
219 
220 } // end namespace Eigen
221 
222 #endif // EIGEN_EULERANGLES_H
#define EIGEN_DEPRECATED
Definition: Macros.h:923
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:883
#define EIGEN_PI
Definition: MathFunctions.h:16
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
#define EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(TYPE, ROWS, COLS)
Definition: StaticAssert.h:56
internal::traits< Derived >::Scalar Scalar
Definition: DenseBase.h:61
internal::traits< Matrix< Scalar_, Rows_, Cols_, Options_, MaxRows_, MaxCols_ > >::Scalar Scalar
EIGEN_DEPRECATED Matrix< Scalar, 3, 1 > eulerAngles(Index a0, Index a1, Index a2) const
Definition: EulerAngles.h:139
Matrix< Scalar, 3, 1 > canonicalEulerAngles(Index a0, Index a1, Index a2) const
Definition: EulerAngles.h:43
EIGEN_ALWAYS_INLINE T sin(const T &x)
EIGEN_ALWAYS_INLINE T atan2(const T &y, const T &x)
EIGEN_ALWAYS_INLINE T cos(const T &x)
: InteropHeaders
Definition: Core:139
Eigen::Index Index
The interface type of indices.
Definition: EigenBase.h:41
std::ptrdiff_t j