Performs a real Schur decomposition of a square matrix. More...
Public Types | |
enum | { RowsAtCompileTime , ColsAtCompileTime , Options , MaxRowsAtCompileTime , MaxColsAtCompileTime } |
typedef Matrix< Scalar, ColsAtCompileTime, 1, Options &~RowMajor, MaxColsAtCompileTime, 1 > | ColumnVectorType |
typedef std::complex< typename NumTraits< Scalar >::Real > | ComplexScalar |
typedef Matrix< ComplexScalar, ColsAtCompileTime, 1, Options &~RowMajor, MaxColsAtCompileTime, 1 > | EigenvalueType |
typedef Eigen::Index | Index |
typedef MatrixType_ | MatrixType |
typedef MatrixType::Scalar | Scalar |
Public Member Functions | |
template<typename InputType > | |
RealSchur< MatrixType > & | compute (const EigenBase< InputType > &matrix, bool computeU) |
template<typename InputType > | |
RealSchur & | compute (const EigenBase< InputType > &matrix, bool computeU=true) |
Computes Schur decomposition of given matrix. More... | |
template<typename HessMatrixType , typename OrthMatrixType > | |
RealSchur & | computeFromHessenberg (const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU) |
Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T. More... | |
template<typename HessMatrixType , typename OrthMatrixType > | |
RealSchur< MatrixType > & | computeFromHessenberg (const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU) |
Index | getMaxIterations () |
Returns the maximum number of iterations. More... | |
ComputationInfo | info () const |
Reports whether previous computation was successful. More... | |
const MatrixType & | matrixT () const |
Returns the quasi-triangular matrix in the Schur decomposition. More... | |
const MatrixType & | matrixU () const |
Returns the orthogonal matrix in the Schur decomposition. More... | |
template<typename InputType > | |
RealSchur (const EigenBase< InputType > &matrix, bool computeU=true) | |
Constructor; computes real Schur decomposition of given matrix. More... | |
RealSchur (Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime) | |
Default constructor. More... | |
RealSchur & | setMaxIterations (Index maxIters) |
Sets the maximum number of iterations allowed. More... | |
Static Public Attributes | |
static const int | m_maxIterationsPerRow |
Maximum number of iterations per row. More... | |
Private Types | |
typedef Matrix< Scalar, 3, 1 > | Vector3s |
Private Member Functions | |
Scalar | computeNormOfT () |
void | computeShift (Index iu, Index iter, Scalar &exshift, Vector3s &shiftInfo) |
Index | findSmallSubdiagEntry (Index iu, const Scalar &considerAsZero) |
void | initFrancisQRStep (Index il, Index iu, const Vector3s &shiftInfo, Index &im, Vector3s &firstHouseholderVector) |
void | performFrancisQRStep (Index il, Index im, Index iu, bool computeU, const Vector3s &firstHouseholderVector, Scalar *workspace) |
void | splitOffTwoRows (Index iu, bool computeU, const Scalar &exshift) |
Performs a real Schur decomposition of a square matrix.
This is defined in the Eigenvalues module.
MatrixType_ | the type of the matrix of which we are computing the real Schur decomposition; this is expected to be an instantiation of the Matrix class template. |
Given a real square matrix A, this class computes the real Schur decomposition:
Call the function compute() to compute the real Schur decomposition of a given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool) constructor which computes the real Schur decomposition at construction time. Once the decomposition is computed, you can use the matrixU() and matrixT() functions to retrieve the matrices U and T in the decomposition.
The documentation of RealSchur(const MatrixType&, bool) contains an example of the typical use of this class.
Definition at line 56 of file RealSchur.h.
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> Eigen::RealSchur< MatrixType_ >::ColumnVectorType |
Definition at line 72 of file RealSchur.h.
typedef std::complex<typename NumTraits<Scalar>::Real> Eigen::RealSchur< MatrixType_ >::ComplexScalar |
Definition at line 68 of file RealSchur.h.
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> Eigen::RealSchur< MatrixType_ >::EigenvalueType |
Definition at line 71 of file RealSchur.h.
typedef Eigen::Index Eigen::RealSchur< MatrixType_ >::Index |
Definition at line 69 of file RealSchur.h.
typedef MatrixType_ Eigen::RealSchur< MatrixType_ >::MatrixType |
Definition at line 59 of file RealSchur.h.
typedef MatrixType::Scalar Eigen::RealSchur< MatrixType_ >::Scalar |
Definition at line 67 of file RealSchur.h.
|
private |
Definition at line 238 of file RealSchur.h.
anonymous enum |
Enumerator | |
---|---|
RowsAtCompileTime | |
ColsAtCompileTime | |
Options | |
MaxRowsAtCompileTime | |
MaxColsAtCompileTime |
Definition at line 60 of file RealSchur.h.
|
inlineexplicit |
Default constructor.
[in] | size | Positive integer, size of the matrix whose Schur decomposition will be computed. |
The default constructor is useful in cases in which the user intends to perform decompositions via compute(). The size
parameter is only used as a hint. It is not an error to give a wrong size
, but it may impair performance.
Definition at line 85 of file RealSchur.h.
|
inlineexplicit |
Constructor; computes real Schur decomposition of given matrix.
[in] | matrix | Square matrix whose Schur decomposition is to be computed. |
[in] | computeU | If true, both T and U are computed; if false, only T is computed. |
This constructor calls compute() to compute the Schur decomposition.
Example:
Output:
Here is a random 6x6 matrix, A: 0.68 -0.33 -0.27 -0.717 -0.687 0.0259 -0.211 0.536 0.0268 0.214 -0.198 0.678 0.566 -0.444 0.904 -0.967 -0.74 0.225 0.597 0.108 0.832 -0.514 -0.782 -0.408 0.823 -0.0452 0.271 -0.726 0.998 0.275 -0.605 0.258 0.435 0.608 -0.563 0.0486 The orthogonal matrix U is: 0.348 -0.754 0.00435 -0.351 0.0146 0.432 -0.16 -0.266 -0.747 0.457 -0.366 0.0571 0.505 -0.157 0.0746 0.644 0.518 -0.177 0.703 0.324 -0.409 -0.349 -0.187 -0.275 0.296 0.372 0.24 0.324 -0.379 0.684 -0.126 0.305 -0.46 -0.161 0.647 0.485 The quasi-triangular matrix T is: -0.2 -1.83 0.864 0.271 1.09 0.139 0.647 0.298 -0.0536 0.676 -0.288 0.0231 0 0 0.967 -0.201 -0.429 0.847 0 0 0 0.353 0.603 0.694 0 0 0 0 0.572 -1.03 0 0 0 0 0.0184 0.664 U * T * U^T = 0.68 -0.33 -0.27 -0.717 -0.687 0.0259 -0.211 0.536 0.0268 0.214 -0.198 0.678 0.566 -0.444 0.904 -0.967 -0.74 0.225 0.597 0.108 0.832 -0.514 -0.782 -0.408 0.823 -0.0452 0.271 -0.726 0.998 0.275 -0.605 0.258 0.435 0.608 -0.563 0.0486
Definition at line 106 of file RealSchur.h.
RealSchur<MatrixType>& Eigen::RealSchur< MatrixType_ >::compute | ( | const EigenBase< InputType > & | matrix, |
bool | computeU | ||
) |
Definition at line 251 of file RealSchur.h.
RealSchur& Eigen::RealSchur< MatrixType_ >::compute | ( | const EigenBase< InputType > & | matrix, |
bool | computeU = true |
||
) |
Computes Schur decomposition of given matrix.
[in] | matrix | Square matrix whose Schur decomposition is to be computed. |
[in] | computeU | If true, both T and U are computed; if false, only T is computed. |
*this
The Schur decomposition is computed by first reducing the matrix to Hessenberg form using the class HessenbergDecomposition. The Hessenberg matrix is then reduced to triangular form by performing Francis QR iterations with implicit double shift. The cost of computing the Schur decomposition depends on the number of iterations; as a rough guide, it may be taken to be
Example:
Output:
The matrix T in the decomposition of A is: 0.523 -0.698 0.148 0.742 0.475 0.986 -0.793 0.721 0 0 -0.28 -0.77 0 0 0.0145 -0.367 The matrix T in the decomposition of A^(-1) is: -3.06 -4.57 -5.97 5.48 0.168 -2.62 -3.27 3.9 0 0 0.427 0.573 0 0 -1.05 1.35
RealSchur& Eigen::RealSchur< MatrixType_ >::computeFromHessenberg | ( | const HessMatrixType & | matrixH, |
const OrthMatrixType & | matrixQ, | ||
bool | computeU | ||
) |
Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T.
[in] | matrixH | Matrix in Hessenberg form H |
[in] | matrixQ | orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T |
computeU | Computes the matriX U of the Schur vectors |
*this
This routine assumes that the matrix is already reduced in Hessenberg form matrixH using either the class HessenbergDecomposition or another mean. It computes the upper quasi-triangular matrix T of the Schur decomposition of H When computeU is true, this routine computes the matrix U such that A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix is not available, the user should give an identity matrix (Q.setIdentity())
RealSchur<MatrixType>& Eigen::RealSchur< MatrixType_ >::computeFromHessenberg | ( | const HessMatrixType & | matrixH, |
const OrthMatrixType & | matrixQ, | ||
bool | computeU | ||
) |
Definition at line 289 of file RealSchur.h.
|
inlineprivate |
Definition at line 364 of file RealSchur.h.
|
inlineprivate |
Definition at line 432 of file RealSchur.h.
|
inlineprivate |
Definition at line 378 of file RealSchur.h.
|
inline |
|
inline |
Reports whether previous computation was successful.
Success
if computation was successful, NoConvergence
otherwise. Definition at line 197 of file RealSchur.h.
|
inlineprivate |
|
inline |
Returns the quasi-triangular matrix in the Schur decomposition.
Definition at line 146 of file RealSchur.h.
|
inline |
Returns the orthogonal matrix in the Schur decomposition.
computeU
was set to true (the default value).Definition at line 129 of file RealSchur.h.
|
inlineprivate |
Definition at line 499 of file RealSchur.h.
|
inline |
Sets the maximum number of iterations allowed.
If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size of the matrix.
Definition at line 208 of file RealSchur.h.
|
inlineprivate |
|
private |
Definition at line 232 of file RealSchur.h.
|
private |
Definition at line 233 of file RealSchur.h.
|
private |
Definition at line 234 of file RealSchur.h.
|
private |
Definition at line 229 of file RealSchur.h.
|
private |
Definition at line 230 of file RealSchur.h.
|
private |
Definition at line 235 of file RealSchur.h.
|
static |
Maximum number of iterations per row.
If not otherwise specified, the maximum number of iterations is this number times the size of the matrix. It is currently set to 40.
Definition at line 225 of file RealSchur.h.
|
private |
Definition at line 236 of file RealSchur.h.
|
private |
Definition at line 231 of file RealSchur.h.