10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_IMAGE_PATCH_H
33 template<DenseIndex Rows, DenseIndex Cols,
typename XprType>
34 struct traits<TensorImagePatchOp<Rows, Cols, XprType> > :
public traits<XprType>
36 typedef std::remove_const_t<typename XprType::Scalar> Scalar;
38 typedef typename XprTraits::StorageKind StorageKind;
39 typedef typename XprTraits::Index
Index;
40 typedef typename XprType::Nested Nested;
41 typedef std::remove_reference_t<Nested> Nested_;
42 static constexpr
int NumDimensions = XprTraits::NumDimensions + 1;
43 static constexpr
int Layout = XprTraits::Layout;
44 typedef typename XprTraits::PointerType PointerType;
47 template<DenseIndex Rows, DenseIndex Cols,
typename XprType>
48 struct eval<TensorImagePatchOp<Rows, Cols, XprType>,
Eigen::Dense>
50 typedef const TensorImagePatchOp<Rows, Cols, XprType>& type;
53 template<DenseIndex Rows, DenseIndex Cols,
typename XprType>
54 struct nested<TensorImagePatchOp<Rows, Cols, XprType>, 1, typename eval<TensorImagePatchOp<Rows, Cols, XprType> >::type>
56 typedef TensorImagePatchOp<Rows, Cols, XprType> type;
59 template <
typename Self,
bool Vectorizable>
60 struct ImagePatchCopyOp {
61 typedef typename Self::Index
Index;
62 typedef typename Self::Scalar Scalar;
63 typedef typename Self::Impl Impl;
65 const Self&
self,
const Index num_coeff_to_copy,
const Index dst_index,
66 Scalar* dst_data,
const Index src_index) {
67 const Impl& impl =
self.impl();
68 for (
Index i = 0;
i < num_coeff_to_copy; ++
i) {
69 dst_data[dst_index +
i] = impl.coeff(src_index + i);
74 template <
typename Self>
75 struct ImagePatchCopyOp<Self, true> {
76 typedef typename Self::Index
Index;
77 typedef typename Self::Scalar Scalar;
78 typedef typename Self::Impl Impl;
79 typedef typename packet_traits<Scalar>::type Packet;
81 const Self&
self,
const Index num_coeff_to_copy,
const Index dst_index,
82 Scalar* dst_data,
const Index src_index) {
83 const Impl& impl =
self.impl();
84 const Index packet_size = internal::unpacket_traits<Packet>::size;
85 const Index vectorized_size =
86 (num_coeff_to_copy / packet_size) * packet_size;
87 for (
Index i = 0;
i < vectorized_size;
i += packet_size) {
88 Packet
p = impl.template packet<Unaligned>(src_index + i);
89 internal::pstoret<Scalar, Packet, Unaligned>(dst_data + dst_index + i, p);
91 for (
Index i = vectorized_size;
i < num_coeff_to_copy; ++
i) {
92 dst_data[dst_index +
i] = impl.coeff(src_index + i);
97 template <
typename Self>
98 struct ImagePatchPaddingOp {
99 typedef typename Self::Index
Index;
100 typedef typename Self::Scalar Scalar;
101 typedef typename packet_traits<Scalar>::type Packet;
103 const Index num_coeff_to_pad,
const Scalar padding_value,
104 const Index dst_index, Scalar* dst_data) {
105 const Index packet_size = internal::unpacket_traits<Packet>::size;
106 const Packet padded_packet = internal::pset1<Packet>(padding_value);
107 const Index vectorized_size =
108 (num_coeff_to_pad / packet_size) * packet_size;
109 for (
Index i = 0;
i < vectorized_size;
i += packet_size) {
110 internal::pstoret<Scalar, Packet, Unaligned>(dst_data + dst_index + i,
113 for (
Index i = vectorized_size;
i < num_coeff_to_pad; ++
i) {
114 dst_data[dst_index +
i] = padding_value;
121 template<DenseIndex Rows, DenseIndex Cols,
typename XprType>
125 typedef typename Eigen::internal::traits<TensorImagePatchOp>::Scalar
Scalar;
128 typedef typename Eigen::internal::nested<TensorImagePatchOp>::type
Nested;
129 typedef typename Eigen::internal::traits<TensorImagePatchOp>::StorageKind
StorageKind;
130 typedef typename Eigen::internal::traits<TensorImagePatchOp>::Index
Index;
215 template<DenseIndex Rows, DenseIndex Cols,
typename ArgType,
typename Device>
220 static constexpr
int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
221 static constexpr
int NumDims = NumInputDims + 1;
223 typedef std::remove_const_t<typename XprType::Scalar>
Scalar;
238 PreferBlockAccess =
true,
248 :
m_device(device), m_impl(op.expression(), device)
258 m_inputDepth = input_dims[0];
259 m_inputRows = input_dims[1];
260 m_inputCols = input_dims[2];
262 m_inputDepth = input_dims[NumInputDims-1];
263 m_inputRows = input_dims[NumInputDims-2];
264 m_inputCols = input_dims[NumInputDims-3];
288 m_input_rows_eff = (m_inputRows - 1) * m_row_inflate_strides + 1;
289 m_input_cols_eff = (m_inputCols - 1) * m_col_inflate_strides + 1;
302 m_outputRows =
numext::ceil((m_input_rows_eff - m_patch_rows_eff + 1.f) /
static_cast<float>(m_row_strides));
303 m_outputCols =
numext::ceil((m_input_cols_eff - m_patch_cols_eff + 1.f) /
static_cast<float>(m_col_strides));
305 m_rowPaddingTop = numext::maxi<Index>(0, ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2);
306 m_colPaddingLeft = numext::maxi<Index>(0, ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2);
309 m_outputRows =
numext::ceil(m_input_rows_eff /
static_cast<float>(m_row_strides));
310 m_outputCols =
numext::ceil(m_input_cols_eff /
static_cast<float>(m_col_strides));
312 m_rowPaddingTop = ((m_outputRows - 1) * m_row_strides + m_patch_rows_eff - m_input_rows_eff) / 2;
313 m_colPaddingLeft = ((m_outputCols - 1) * m_col_strides + m_patch_cols_eff - m_input_cols_eff) / 2;
316 m_rowPaddingTop = numext::maxi<Index>(0, m_rowPaddingTop);
317 m_colPaddingLeft = numext::maxi<Index>(0, m_colPaddingLeft);
336 m_dimensions[0] = input_dims[0];
339 m_dimensions[3] = m_outputRows * m_outputCols;
340 for (
int i = 4;
i < NumDims; ++
i) {
341 m_dimensions[
i] = input_dims[
i-1];
350 m_dimensions[NumDims-1] = input_dims[NumInputDims-1];
353 m_dimensions[NumDims-4] = m_outputRows * m_outputCols;
354 for (
int i = NumDims-5;
i >= 0; --
i) {
355 m_dimensions[
i] = input_dims[
i];
361 m_colStride = m_dimensions[1];
362 m_patchStride = m_colStride * m_dimensions[2] * m_dimensions[0];
363 m_otherStride = m_patchStride * m_dimensions[3];
365 m_colStride = m_dimensions[NumDims-2];
366 m_patchStride = m_colStride * m_dimensions[NumDims-3] * m_dimensions[NumDims-1];
367 m_otherStride = m_patchStride * m_dimensions[NumDims-4];
371 m_rowInputStride = m_inputDepth;
372 m_colInputStride = m_inputDepth * m_inputRows;
373 m_patchInputStride = m_inputDepth * m_inputRows * m_inputCols;
376 m_fastOtherStride = internal::TensorIntDivisor<Index>(m_otherStride);
377 m_fastPatchStride = internal::TensorIntDivisor<Index>(m_patchStride);
378 m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
379 m_fastInflateRowStride = internal::TensorIntDivisor<Index>(m_row_inflate_strides);
380 m_fastInflateColStride = internal::TensorIntDivisor<Index>(m_col_inflate_strides);
381 m_fastInputColsEff = internal::TensorIntDivisor<Index>(m_input_cols_eff);
384 m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
386 m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[0]);
388 m_fastOutputDepth = internal::TensorIntDivisor<Index>(m_dimensions[NumDims-1]);
395 m_impl.evalSubExprsIfNeeded(NULL);
399 #ifdef EIGEN_USE_THREADS
400 template <
typename EvalSubExprsCallback>
401 EIGEN_STRONG_INLINE
void evalSubExprsIfNeededAsync(
403 m_impl.evalSubExprsIfNeededAsync(
nullptr, [done](
bool) { done(
true); });
414 const Index patchIndex = index / m_fastPatchStride;
416 const Index patchOffset = (index - patchIndex * m_patchStride) / m_fastOutputDepth;
419 const Index otherIndex = (NumDims == 4) ? 0 : index / m_fastOtherStride;
420 const Index patch2DIndex = (NumDims == 4) ? patchIndex : (index - otherIndex * m_otherStride) / m_fastPatchStride;
423 const Index colIndex = patch2DIndex / m_fastOutputRows;
424 const Index colOffset = patchOffset / m_fastColStride;
425 const Index inputCol = colIndex * m_col_strides + colOffset * m_in_col_strides - m_colPaddingLeft;
426 const Index origInputCol = (m_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInflateColStride) : 0);
427 if (inputCol < 0 || inputCol >= m_input_cols_eff ||
428 ((m_col_inflate_strides != 1) && (inputCol != origInputCol * m_col_inflate_strides))) {
429 return Scalar(m_paddingValue);
433 const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
434 const Index rowOffset = patchOffset - colOffset * m_colStride;
435 const Index inputRow = rowIndex * m_row_strides + rowOffset * m_in_row_strides - m_rowPaddingTop;
436 const Index origInputRow = (m_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInflateRowStride) : 0);
437 if (inputRow < 0 || inputRow >= m_input_rows_eff ||
438 ((m_row_inflate_strides != 1) && (inputRow != origInputRow * m_row_inflate_strides))) {
439 return Scalar(m_paddingValue);
442 const int depth_index =
static_cast<int>(
Layout) ==
static_cast<int>(
ColMajor) ? 0 : NumDims - 1;
443 const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
445 const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex * m_patchInputStride;
446 return m_impl.coeff(inputIndex);
449 template<
int LoadMode>
454 if (m_in_row_strides != 1 || m_in_col_strides != 1 || m_row_inflate_strides != 1 || m_col_inflate_strides != 1) {
455 return packetWithPossibleZero(index);
459 const Index patchIndex = indices[0] / m_fastPatchStride;
460 if (patchIndex != indices[1] / m_fastPatchStride) {
461 return packetWithPossibleZero(index);
463 const Index otherIndex = (NumDims == 4) ? 0 : indices[0] / m_fastOtherStride;
464 eigen_assert(otherIndex == indices[1] / m_fastOtherStride);
467 const Index patchOffsets[2] = {(indices[0] - patchIndex * m_patchStride) / m_fastOutputDepth,
468 (indices[1] - patchIndex * m_patchStride) / m_fastOutputDepth};
470 const Index patch2DIndex = (NumDims == 4) ? patchIndex : (indices[0] - otherIndex * m_otherStride) / m_fastPatchStride;
471 eigen_assert(patch2DIndex == (indices[1] - otherIndex * m_otherStride) / m_fastPatchStride);
473 const Index colIndex = patch2DIndex / m_fastOutputRows;
474 const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
477 const Index inputCols[2] = {colIndex * m_col_strides + colOffsets[0] -
478 m_colPaddingLeft, colIndex * m_col_strides + colOffsets[1] - m_colPaddingLeft};
479 if (inputCols[1] < 0 || inputCols[0] >= m_inputCols) {
480 return internal::pset1<PacketReturnType>(
Scalar(m_paddingValue));
483 if (inputCols[0] == inputCols[1]) {
484 const Index rowIndex = patch2DIndex - colIndex * m_outputRows;
485 const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
488 const Index inputRows[2] = {rowIndex * m_row_strides + rowOffsets[0] -
489 m_rowPaddingTop, rowIndex * m_row_strides + rowOffsets[1] - m_rowPaddingTop};
491 if (inputRows[1] < 0 || inputRows[0] >= m_inputRows) {
492 return internal::pset1<PacketReturnType>(
Scalar(m_paddingValue));
495 if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
497 const int depth_index =
static_cast<int>(
Layout) ==
static_cast<int>(
ColMajor) ? 0 : NumDims - 1;
498 const Index depth = index - (index / m_fastOutputDepth) * m_dimensions[depth_index];
499 const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex * m_patchInputStride;
500 return m_impl.template packet<Unaligned>(inputIndex);
504 return packetWithPossibleZero(index);
526 const double compute_cost = 3 * TensorOpCost::DivCost<Index>() +
527 6 * TensorOpCost::MulCost<Index>() +
528 8 * TensorOpCost::MulCost<Index>();
529 return m_impl.costPerCoeff(vectorized) +
#define EIGEN_UNROLL_LOOP
#define EIGEN_DEVICE_FUNC
#define EIGEN_STATIC_ASSERT(X, MSG)
DenseIndex padding_right() const
DenseIndex in_col_strides() const
TensorImagePatchOp(const XprType &expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, PaddingType padding_type, Scalar padding_value)
PaddingType padding_type() const
const DenseIndex m_padding_bottom
DenseIndex row_strides() const
const internal::remove_all_t< typename XprType::Nested > & expression() const
const Scalar m_padding_value
DenseIndex patch_cols() const
const DenseIndex m_in_col_strides
const DenseIndex m_row_strides
TensorImagePatchOp(const XprType &expr, DenseIndex patch_rows, DenseIndex patch_cols, DenseIndex row_strides, DenseIndex col_strides, DenseIndex in_row_strides, DenseIndex in_col_strides, DenseIndex row_inflate_strides, DenseIndex col_inflate_strides, DenseIndex padding_top, DenseIndex padding_bottom, DenseIndex padding_left, DenseIndex padding_right, Scalar padding_value)
const DenseIndex m_padding_right
XprType::CoeffReturnType CoeffReturnType
DenseIndex padding_top() const
const DenseIndex m_padding_left
Eigen::internal::traits< TensorImagePatchOp >::Scalar Scalar
const DenseIndex m_patch_rows
DenseIndex in_row_strides() const
DenseIndex padding_bottom() const
DenseIndex padding_left() const
const DenseIndex m_in_row_strides
const DenseIndex m_col_strides
const DenseIndex m_row_inflate_strides
const PaddingType m_padding_type
DenseIndex row_inflate_strides() const
DenseIndex patch_rows() const
bool padding_explicit() const
DenseIndex col_strides() const
Eigen::internal::nested< TensorImagePatchOp >::type Nested
Eigen::internal::traits< TensorImagePatchOp >::Index Index
Eigen::internal::traits< TensorImagePatchOp >::StorageKind StorageKind
Scalar padding_value() const
DenseIndex col_inflate_strides() const
const DenseIndex m_col_inflate_strides
const DenseIndex m_padding_top
const DenseIndex m_patch_cols
const bool m_padding_explicit
Eigen::NumTraits< Scalar >::Real RealScalar
typename remove_all< T >::type remove_all_t
Scalar() ceil(const Scalar &x)
: TensorContractionSycl.h, provides various tensor contraction kernel for SYCL backend
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
internal::packet_traits< Scalar >::type type
std::remove_const_t< typename XprType::Scalar > Scalar
internal::TensorBlockNotImplemented TensorBlock
Index colPaddingLeft() const
Storage::Type EvaluatorPointerType
internal::TensorIntDivisor< Index > m_fastInflateRowStride
internal::TensorIntDivisor< Index > m_fastPatchStride
Index userInColStride() const
PacketReturnType packet(Index index) const
Index rowInflateStride() const
PacketReturnType packetWithPossibleZero(Index index) const
Index userColStride() const
TensorEvaluator< ArgType, Device > Impl
XprType::CoeffReturnType CoeffReturnType
bool evalSubExprsIfNeeded(EvaluatorPointerType)
TensorOpCost costPerCoeff(bool vectorized) const
internal::TensorIntDivisor< Index > m_fastOtherStride
internal::TensorIntDivisor< Index > m_fastOutputRows
Index m_row_inflate_strides
Index userRowStride() const
internal::TensorIntDivisor< Index > m_fastInputColsEff
EvaluatorPointerType data() const
DSizes< Index, NumDims > Dimensions
const TensorEvaluator< ArgType, Device > & impl() const
internal::TensorIntDivisor< Index > m_fastInflateColStride
Index colInflateStride() const
const Dimensions & dimensions() const
Index m_col_inflate_strides
CoeffReturnType coeff(Index index) const
TensorEvaluator(const XprType &op, const Device &device)
TensorImagePatchOp< Rows, Cols, ArgType > XprType
const Device EIGEN_DEVICE_REF m_device
TensorEvaluator< const TensorImagePatchOp< Rows, Cols, ArgType >, Device > Self
Index userInRowStride() const
StorageMemory< CoeffReturnType, Device > Storage
TensorEvaluator< ArgType, Device > m_impl
Index rowPaddingTop() const
PacketType< CoeffReturnType, Device >::type PacketReturnType
internal::TensorIntDivisor< Index > m_fastOutputDepth
internal::TensorIntDivisor< Index > m_fastColStride
A cost model used to limit the number of threads used for evaluating tensor expression.
const Dimensions & dimensions() const
static constexpr int Layout
const Device EIGEN_DEVICE_REF m_device
CoeffReturnType coeff(Index index) const
Storage::Type EvaluatorPointerType
static constexpr int PacketSize