arch/MSA/MathFunctions.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2007 Julien Pommier
5 // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
6 // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
7 //
8 // Copyright (C) 2018 Wave Computing, Inc.
9 // Written by:
10 // Chris Larsen
11 // Alexey Frunze (afrunze@wavecomp.com)
12 //
13 // This Source Code Form is subject to the terms of the Mozilla
14 // Public License v. 2.0. If a copy of the MPL was not distributed
15 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
16 
17 /* The sin, cos, exp, and log functions of this file come from
18  * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
19  */
20 
21 /* The tanh function of this file is an adaptation of
22  * template<typename T> T generic_fast_tanh_float(const T&)
23  * from MathFunctionsImpl.h.
24  */
25 
26 #ifndef EIGEN_MATH_FUNCTIONS_MSA_H
27 #define EIGEN_MATH_FUNCTIONS_MSA_H
28 
29 #include "../../InternalHeaderCheck.h"
30 
31 namespace Eigen {
32 
33 namespace internal {
34 
35 template <>
37 plog<Packet4f>(const Packet4f& _x) {
38  static EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
39  static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292e-2f);
40  static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, -1.1514610310e-1f);
41  static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740e-1f);
42  static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, -1.2420140846e-1f);
43  static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, +1.4249322787e-1f);
44  static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, -1.6668057665e-1f);
45  static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, +2.0000714765e-1f);
46  static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, -2.4999993993e-1f);
47  static EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, +3.3333331174e-1f);
48  static EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
49  static EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
50  static EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
51  static EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
52 
53  // Convert negative argument into NAN (quiet negative, to be specific).
54  Packet4f zero = (Packet4f)__builtin_msa_ldi_w(0);
55  Packet4i neg_mask = __builtin_msa_fclt_w(_x, zero);
56  Packet4i zero_mask = __builtin_msa_fceq_w(_x, zero);
57  Packet4f non_neg_x_or_nan = padd(_x, (Packet4f)neg_mask); // Add 0.0 or NAN.
58  Packet4f x = non_neg_x_or_nan;
59 
60  // Extract exponent from x = mantissa * 2**exponent, where 1.0 <= mantissa < 2.0.
61  // N.B. the exponent is one less of what frexpf() would return.
62  Packet4i e_int = __builtin_msa_ftint_s_w(__builtin_msa_flog2_w(x));
63  // Multiply x by 2**(-exponent-1) to get 0.5 <= x < 1.0 as from frexpf().
64  x = __builtin_msa_fexp2_w(x, (Packet4i)__builtin_msa_nori_b((v16u8)e_int, 0));
65 
66  /*
67  if (x < SQRTHF) {
68  x = x + x - 1.0;
69  } else {
70  e += 1;
71  x = x - 1.0;
72  }
73  */
74  Packet4f xx = padd(x, x);
75  Packet4i ge_mask = __builtin_msa_fcle_w(p4f_cephes_SQRTHF, x);
76  e_int = psub(e_int, ge_mask);
77  x = (Packet4f)__builtin_msa_bsel_v((v16u8)ge_mask, (v16u8)xx, (v16u8)x);
78  x = psub(x, p4f_1);
79  Packet4f e = __builtin_msa_ffint_s_w(e_int);
80 
81  Packet4f x2 = pmul(x, x);
82  Packet4f x3 = pmul(x2, x);
83 
84  Packet4f y, y1, y2;
85  y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
86  y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
87  y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
88  y = pmadd(y, x, p4f_cephes_log_p2);
89  y1 = pmadd(y1, x, p4f_cephes_log_p5);
90  y2 = pmadd(y2, x, p4f_cephes_log_p8);
91  y = pmadd(y, x3, y1);
92  y = pmadd(y, x3, y2);
93  y = pmul(y, x3);
94 
95  y = pmadd(e, p4f_cephes_log_q1, y);
96  x = __builtin_msa_fmsub_w(x, x2, p4f_half);
97  x = padd(x, y);
98  x = pmadd(e, p4f_cephes_log_q2, x);
99 
100  // x is now the logarithm result candidate. We still need to handle the
101  // extreme arguments of zero and positive infinity, though.
102  // N.B. if the argument is +INFINITY, x is NAN because the polynomial terms
103  // contain infinities of both signs (see the coefficients and code above).
104  // INFINITY - INFINITY is NAN.
105 
106  // If the argument is +INFINITY, make it the new result candidate.
107  // To achieve that we choose the smaller of the result candidate and the
108  // argument.
109  // This is correct for all finite pairs of values (the logarithm is smaller
110  // than the argument).
111  // This is also correct in the special case when the argument is +INFINITY
112  // and the result candidate is NAN. This is because the fmin.df instruction
113  // prefers non-NANs to NANs.
114  x = __builtin_msa_fmin_w(x, non_neg_x_or_nan);
115 
116  // If the argument is zero (including -0.0), the result becomes -INFINITY.
117  Packet4i neg_infs = __builtin_msa_slli_w(zero_mask, 23);
118  x = (Packet4f)__builtin_msa_bsel_v((v16u8)zero_mask, (v16u8)x, (v16u8)neg_infs);
119 
120  return x;
121 }
122 
123 template <>
125 pexp<Packet4f>(const Packet4f& _x) {
126  // Limiting single-precision pexp's argument to [-128, +128] lets pexp
127  // reach 0 and INFINITY naturally.
128  static EIGEN_DECLARE_CONST_Packet4f(exp_lo, -128.0f);
129  static EIGEN_DECLARE_CONST_Packet4f(exp_hi, +128.0f);
130  static EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
131  static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
132  static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
133  static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500e-4f);
134  static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507e-3f);
135  static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073e-3f);
136  static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894e-2f);
137  static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459e-1f);
138  static EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201e-1f);
139  static EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
140  static EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
141 
142  Packet4f x = _x;
143 
144  // Clamp x.
145  x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(x, p4f_exp_lo), (v16u8)x,
146  (v16u8)p4f_exp_lo);
147  x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_exp_hi, x), (v16u8)x,
148  (v16u8)p4f_exp_hi);
149 
150  // Round to nearest integer by adding 0.5 (with x's sign) and truncating.
151  Packet4f x2_add = (Packet4f)__builtin_msa_binsli_w((v4u32)p4f_half, (v4u32)x, 0);
152  Packet4f x2 = pmadd(x, p4f_cephes_LOG2EF, x2_add);
153  Packet4i x2_int = __builtin_msa_ftrunc_s_w(x2);
154  Packet4f x2_int_f = __builtin_msa_ffint_s_w(x2_int);
155 
156  x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C1);
157  x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C2);
158 
159  Packet4f z = pmul(x, x);
160 
161  Packet4f y = p4f_cephes_exp_p0;
162  y = pmadd(y, x, p4f_cephes_exp_p1);
163  y = pmadd(y, x, p4f_cephes_exp_p2);
164  y = pmadd(y, x, p4f_cephes_exp_p3);
165  y = pmadd(y, x, p4f_cephes_exp_p4);
166  y = pmadd(y, x, p4f_cephes_exp_p5);
167  y = pmadd(y, z, x);
168  y = padd(y, p4f_1);
169 
170  // y *= 2**exponent.
171  y = __builtin_msa_fexp2_w(y, x2_int);
172 
173  return y;
174 }
175 
176 template <>
178 ptanh<Packet4f>(const Packet4f& _x) {
179  static EIGEN_DECLARE_CONST_Packet4f(tanh_tiny, 1e-4f);
180  static EIGEN_DECLARE_CONST_Packet4f(tanh_hi, 9.0f);
181  // The monomial coefficients of the numerator polynomial (odd).
182  static EIGEN_DECLARE_CONST_Packet4f(alpha_1, 4.89352455891786e-3f);
183  static EIGEN_DECLARE_CONST_Packet4f(alpha_3, 6.37261928875436e-4f);
184  static EIGEN_DECLARE_CONST_Packet4f(alpha_5, 1.48572235717979e-5f);
185  static EIGEN_DECLARE_CONST_Packet4f(alpha_7, 5.12229709037114e-8f);
186  static EIGEN_DECLARE_CONST_Packet4f(alpha_9, -8.60467152213735e-11f);
187  static EIGEN_DECLARE_CONST_Packet4f(alpha_11, 2.00018790482477e-13f);
188  static EIGEN_DECLARE_CONST_Packet4f(alpha_13, -2.76076847742355e-16f);
189  // The monomial coefficients of the denominator polynomial (even).
190  static EIGEN_DECLARE_CONST_Packet4f(beta_0, 4.89352518554385e-3f);
191  static EIGEN_DECLARE_CONST_Packet4f(beta_2, 2.26843463243900e-3f);
192  static EIGEN_DECLARE_CONST_Packet4f(beta_4, 1.18534705686654e-4f);
193  static EIGEN_DECLARE_CONST_Packet4f(beta_6, 1.19825839466702e-6f);
194 
195  Packet4f x = pabs(_x);
196  Packet4i tiny_mask = __builtin_msa_fclt_w(x, p4f_tanh_tiny);
197 
198  // Clamp the inputs to the range [-9, 9] since anything outside
199  // this range is -/+1.0f in single-precision.
200  x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_tanh_hi, x), (v16u8)x,
201  (v16u8)p4f_tanh_hi);
202 
203  // Since the polynomials are odd/even, we need x**2.
204  Packet4f x2 = pmul(x, x);
205 
206  // Evaluate the numerator polynomial p.
207  Packet4f p = pmadd(x2, p4f_alpha_13, p4f_alpha_11);
208  p = pmadd(x2, p, p4f_alpha_9);
209  p = pmadd(x2, p, p4f_alpha_7);
210  p = pmadd(x2, p, p4f_alpha_5);
211  p = pmadd(x2, p, p4f_alpha_3);
212  p = pmadd(x2, p, p4f_alpha_1);
213  p = pmul(x, p);
214 
215  // Evaluate the denominator polynomial q.
216  Packet4f q = pmadd(x2, p4f_beta_6, p4f_beta_4);
217  q = pmadd(x2, q, p4f_beta_2);
218  q = pmadd(x2, q, p4f_beta_0);
219 
220  // Divide the numerator by the denominator.
221  p = pdiv(p, q);
222 
223  // Reinstate the sign.
224  p = (Packet4f)__builtin_msa_binsli_w((v4u32)p, (v4u32)_x, 0);
225 
226  // When the argument is very small in magnitude it's more accurate to just return it.
227  p = (Packet4f)__builtin_msa_bsel_v((v16u8)tiny_mask, (v16u8)p, (v16u8)_x);
228 
229  return p;
230 }
231 
232 template <bool sine>
234  static EIGEN_DECLARE_CONST_Packet4f(sincos_max_arg, 13176795.0f); // Approx. (2**24) / (4/Pi).
235  static EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1, -0.78515625f);
236  static EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
237  static EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
238  static EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891e-4f);
239  static EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736e-3f);
240  static EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611e-1f);
241  static EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948e-5f);
242  static EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765e-3f);
243  static EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827e-2f);
244  static EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4/Pi.
245  static EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
246  static EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
247 
248  Packet4f x = pabs(_x);
249 
250  // Translate infinite arguments into NANs.
251  Packet4f zero_or_nan_if_inf = psub(_x, _x);
252  x = padd(x, zero_or_nan_if_inf);
253  // Prevent sin/cos from generating values larger than 1.0 in magnitude
254  // for very large arguments by setting x to 0.0.
255  Packet4i small_or_nan_mask = __builtin_msa_fcult_w(x, p4f_sincos_max_arg);
256  x = pand(x, (Packet4f)small_or_nan_mask);
257 
258  // Scale x by 4/Pi to find x's octant.
259  Packet4f y = pmul(x, p4f_cephes_FOPI);
260  // Get the octant. We'll reduce x by this number of octants or by one more than it.
261  Packet4i y_int = __builtin_msa_ftrunc_s_w(y);
262  // x's from even-numbered octants will translate to octant 0: [0, +Pi/4].
263  // x's from odd-numbered octants will translate to octant -1: [-Pi/4, 0].
264  // Adjustment for odd-numbered octants: octant = (octant + 1) & (~1).
265  Packet4i y_int1 = __builtin_msa_addvi_w(y_int, 1);
266  Packet4i y_int2 = (Packet4i)__builtin_msa_bclri_w((Packet4ui)y_int1, 0); // bclri = bit-clear
267  y = __builtin_msa_ffint_s_w(y_int2);
268 
269  // Compute the sign to apply to the polynomial.
270  Packet4i sign_mask = sine ? pxor(__builtin_msa_slli_w(y_int1, 29), (Packet4i)_x)
271  : __builtin_msa_slli_w(__builtin_msa_addvi_w(y_int, 3), 29);
272 
273  // Get the polynomial selection mask.
274  // We'll calculate both (sin and cos) polynomials and then select from the two.
275  Packet4i poly_mask = __builtin_msa_ceqi_w(__builtin_msa_slli_w(y_int2, 30), 0);
276 
277  // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4.
278  // The magic pass: "Extended precision modular arithmetic"
279  // x = ((x - y * DP1) - y * DP2) - y * DP3
280  Packet4f tmp1 = pmul(y, p4f_minus_cephes_DP1);
281  Packet4f tmp2 = pmul(y, p4f_minus_cephes_DP2);
282  Packet4f tmp3 = pmul(y, p4f_minus_cephes_DP3);
283  x = padd(x, tmp1);
284  x = padd(x, tmp2);
285  x = padd(x, tmp3);
286 
287  // Evaluate the cos(x) polynomial.
288  y = p4f_coscof_p0;
289  Packet4f z = pmul(x, x);
290  y = pmadd(y, z, p4f_coscof_p1);
291  y = pmadd(y, z, p4f_coscof_p2);
292  y = pmul(y, z);
293  y = pmul(y, z);
294  y = __builtin_msa_fmsub_w(y, z, p4f_half);
295  y = padd(y, p4f_1);
296 
297  // Evaluate the sin(x) polynomial.
298  Packet4f y2 = p4f_sincof_p0;
299  y2 = pmadd(y2, z, p4f_sincof_p1);
300  y2 = pmadd(y2, z, p4f_sincof_p2);
301  y2 = pmul(y2, z);
302  y2 = pmadd(y2, x, x);
303 
304  // Select the correct result from the two polynomials.
305  y = sine ? (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y, (v16u8)y2)
306  : (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y2, (v16u8)y);
307 
308  // Update the sign.
309  sign_mask = pxor(sign_mask, (Packet4i)y);
310  y = (Packet4f)__builtin_msa_binsli_w((v4u32)y, (v4u32)sign_mask, 0); // binsli = bit-insert-left
311  return y;
312 }
313 
314 template <>
316 psin<Packet4f>(const Packet4f& x) {
317  return psincos_inner_msa_float</* sine */ true>(x);
318 }
319 
320 template <>
322 pcos<Packet4f>(const Packet4f& x) {
323  return psincos_inner_msa_float</* sine */ false>(x);
324 }
325 
326 template <>
328 pexp<Packet2d>(const Packet2d& _x) {
329  // Limiting double-precision pexp's argument to [-1024, +1024] lets pexp
330  // reach 0 and INFINITY naturally.
331  static EIGEN_DECLARE_CONST_Packet2d(exp_lo, -1024.0);
332  static EIGEN_DECLARE_CONST_Packet2d(exp_hi, +1024.0);
333  static EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
334  static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
335  static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
336  static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
337  static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
338  static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
339  static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
340  static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
341  static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
342  static EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
343  static EIGEN_DECLARE_CONST_Packet2d(half, 0.5);
344  static EIGEN_DECLARE_CONST_Packet2d(1, 1.0);
345  static EIGEN_DECLARE_CONST_Packet2d(2, 2.0);
346 
347  Packet2d x = _x;
348 
349  // Clamp x.
350  x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(x, p2d_exp_lo), (v16u8)x,
351  (v16u8)p2d_exp_lo);
352  x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(p2d_exp_hi, x), (v16u8)x,
353  (v16u8)p2d_exp_hi);
354 
355  // Round to nearest integer by adding 0.5 (with x's sign) and truncating.
356  Packet2d x2_add = (Packet2d)__builtin_msa_binsli_d((v2u64)p2d_half, (v2u64)x, 0);
357  Packet2d x2 = pmadd(x, p2d_cephes_LOG2EF, x2_add);
358  Packet2l x2_long = __builtin_msa_ftrunc_s_d(x2);
359  Packet2d x2_long_d = __builtin_msa_ffint_s_d(x2_long);
360 
361  x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C1);
362  x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C2);
363 
364  x2 = pmul(x, x);
365 
366  Packet2d px = p2d_cephes_exp_p0;
367  px = pmadd(px, x2, p2d_cephes_exp_p1);
368  px = pmadd(px, x2, p2d_cephes_exp_p2);
369  px = pmul(px, x);
370 
371  Packet2d qx = p2d_cephes_exp_q0;
372  qx = pmadd(qx, x2, p2d_cephes_exp_q1);
373  qx = pmadd(qx, x2, p2d_cephes_exp_q2);
374  qx = pmadd(qx, x2, p2d_cephes_exp_q3);
375 
376  x = pdiv(px, psub(qx, px));
377  x = pmadd(p2d_2, x, p2d_1);
378 
379  // x *= 2**exponent.
380  x = __builtin_msa_fexp2_d(x, x2_long);
381 
382  return x;
383 }
384 
385 } // end namespace internal
386 
387 } // end namespace Eigen
388 
389 #endif // EIGEN_MATH_FUNCTIONS_MSA_H
Array< double, 1, 3 > e(1./3., 0.5, 2.)
#define EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Definition: Macros.h:892
float * p
Packet padd(const Packet &a, const Packet &b)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f pcos< Packet4f >(const Packet4f &x)
__vector int Packet4i
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet2d pexp< Packet2d >(const Packet2d &_x)
static EIGEN_DECLARE_CONST_Packet4f(1, 1.0f)
const Scalar & y
Packet4f pabs(const Packet4f &a)
Packet4f pmadd(const Packet4f &a, const Packet4f &b, const Packet4f &c)
__vector unsigned int Packet4ui
Packet pmul(const Packet &a, const Packet &b)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f plog< Packet4f >(const Packet4f &_x)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f ptanh< Packet4f >(const Packet4f &_x)
Packet psub(const Packet &a, const Packet &b)
Packet8h pand(const Packet8h &a, const Packet8h &b)
Packet8h pxor(const Packet8h &a, const Packet8h &b)
Packet pdiv(const Packet &a, const Packet &b)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f psin< Packet4f >(const Packet4f &x)
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet4f pexp< Packet4f >(const Packet4f &_x)
static EIGEN_DECLARE_CONST_Packet2d(1, 1.0)
__vector float Packet4f
Packet4f psincos_inner_msa_float(const Packet4f &_x)
: InteropHeaders
Definition: Core:139