AVX/Complex.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner (benoit.steiner.goog@gmail.com)
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_COMPLEX_AVX_H
11 #define EIGEN_COMPLEX_AVX_H
12 
13 #include "../../InternalHeaderCheck.h"
14 
15 namespace Eigen {
16 
17 namespace internal {
18 
19 //---------- float ----------
20 struct Packet4cf
21 {
22  EIGEN_STRONG_INLINE Packet4cf() {}
23  EIGEN_STRONG_INLINE explicit Packet4cf(const __m256& a) : v(a) {}
24  __m256 v;
25 };
26 
27 #ifndef EIGEN_VECTORIZE_AVX512
28 template<> struct packet_traits<std::complex<float> > : default_packet_traits
29 {
30  typedef Packet4cf type;
31  typedef Packet2cf half;
32  enum {
33  Vectorizable = 1,
34  AlignedOnScalar = 1,
35  size = 4,
36 
37  HasAdd = 1,
38  HasSub = 1,
39  HasMul = 1,
40  HasDiv = 1,
41  HasNegate = 1,
42  HasSqrt = 1,
43  HasAbs = 0,
44  HasAbs2 = 0,
45  HasMin = 0,
46  HasMax = 0,
47  HasSetLinear = 0
48  };
49 };
50 #endif
51 
52 template<> struct unpacket_traits<Packet4cf> {
53  typedef std::complex<float> type;
54  typedef Packet2cf half;
55  typedef Packet8f as_real;
56  enum {
57  size=4,
58  alignment=Aligned32,
59  vectorizable=true,
60  masked_load_available=false,
61  masked_store_available=false
62  };
63 };
64 
65 template<> EIGEN_STRONG_INLINE Packet4cf padd<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_add_ps(a.v,b.v)); }
66 template<> EIGEN_STRONG_INLINE Packet4cf psub<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_sub_ps(a.v,b.v)); }
67 template<> EIGEN_STRONG_INLINE Packet4cf pnegate(const Packet4cf& a)
68 {
69  return Packet4cf(pnegate(a.v));
70 }
71 template<> EIGEN_STRONG_INLINE Packet4cf pconj(const Packet4cf& a)
72 {
73  const __m256 mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000));
74  return Packet4cf(_mm256_xor_ps(a.v,mask));
75 }
76 
77 template<> EIGEN_STRONG_INLINE Packet4cf pmul<Packet4cf>(const Packet4cf& a, const Packet4cf& b)
78 {
79  __m256 tmp1 = _mm256_mul_ps(_mm256_moveldup_ps(a.v), b.v);
80  __m256 tmp2 = _mm256_mul_ps(_mm256_movehdup_ps(a.v), _mm256_permute_ps(b.v, _MM_SHUFFLE(2,3,0,1)));
81  __m256 result = _mm256_addsub_ps(tmp1, tmp2);
82  return Packet4cf(result);
83 }
84 
85 template <>
86 EIGEN_STRONG_INLINE Packet4cf pcmp_eq(const Packet4cf& a, const Packet4cf& b) {
87  __m256 eq = _mm256_cmp_ps(a.v, b.v, _CMP_EQ_OQ);
88  return Packet4cf(_mm256_and_ps(eq, _mm256_permute_ps(eq, 0xb1)));
89 }
90 
91 template<> EIGEN_STRONG_INLINE Packet4cf ptrue<Packet4cf>(const Packet4cf& a) { return Packet4cf(ptrue(Packet8f(a.v))); }
92 template<> EIGEN_STRONG_INLINE Packet4cf pand <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_and_ps(a.v,b.v)); }
93 template<> EIGEN_STRONG_INLINE Packet4cf por <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_or_ps(a.v,b.v)); }
94 template<> EIGEN_STRONG_INLINE Packet4cf pxor <Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_xor_ps(a.v,b.v)); }
95 template<> EIGEN_STRONG_INLINE Packet4cf pandnot<Packet4cf>(const Packet4cf& a, const Packet4cf& b) { return Packet4cf(_mm256_andnot_ps(b.v,a.v)); }
96 
97 template<> EIGEN_STRONG_INLINE Packet4cf pload <Packet4cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet4cf(pload<Packet8f>(&numext::real_ref(*from))); }
98 template<> EIGEN_STRONG_INLINE Packet4cf ploadu<Packet4cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet4cf(ploadu<Packet8f>(&numext::real_ref(*from))); }
99 
100 
101 template<> EIGEN_STRONG_INLINE Packet4cf pset1<Packet4cf>(const std::complex<float>& from)
102 {
103  const float re = std::real(from);
104  const float im = std::imag(from);
105  return Packet4cf(_mm256_set_ps(im, re, im, re, im, re, im, re));
106 }
107 
108 template<> EIGEN_STRONG_INLINE Packet4cf ploaddup<Packet4cf>(const std::complex<float>* from)
109 {
110  // FIXME The following might be optimized using _mm256_movedup_pd
111  Packet2cf a = ploaddup<Packet2cf>(from);
112  Packet2cf b = ploaddup<Packet2cf>(from+1);
113  return Packet4cf(_mm256_insertf128_ps(_mm256_castps128_ps256(a.v), b.v, 1));
114 }
115 
116 template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); }
117 template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float>* to, const Packet4cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); }
118 
119 template<> EIGEN_DEVICE_FUNC inline Packet4cf pgather<std::complex<float>, Packet4cf>(const std::complex<float>* from, Index stride)
120 {
121  return Packet4cf(_mm256_set_ps(std::imag(from[3*stride]), std::real(from[3*stride]),
122  std::imag(from[2*stride]), std::real(from[2*stride]),
123  std::imag(from[1*stride]), std::real(from[1*stride]),
124  std::imag(from[0*stride]), std::real(from[0*stride])));
125 }
126 
127 template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<float>, Packet4cf>(std::complex<float>* to, const Packet4cf& from, Index stride)
128 {
129  __m128 low = _mm256_extractf128_ps(from.v, 0);
130  to[stride*0] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 0)),
131  _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1)));
132  to[stride*1] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 2)),
133  _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3)));
134 
135  __m128 high = _mm256_extractf128_ps(from.v, 1);
136  to[stride*2] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 0)),
137  _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1)));
138  to[stride*3] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 2)),
139  _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3)));
140 
141 }
142 
143 template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet4cf>(const Packet4cf& a)
144 {
145  return pfirst(Packet2cf(_mm256_castps256_ps128(a.v)));
146 }
147 
148 template<> EIGEN_STRONG_INLINE Packet4cf preverse(const Packet4cf& a) {
149  __m128 low = _mm256_extractf128_ps(a.v, 0);
150  __m128 high = _mm256_extractf128_ps(a.v, 1);
151  __m128d lowd = _mm_castps_pd(low);
152  __m128d highd = _mm_castps_pd(high);
153  low = _mm_castpd_ps(_mm_shuffle_pd(lowd,lowd,0x1));
154  high = _mm_castpd_ps(_mm_shuffle_pd(highd,highd,0x1));
155  __m256 result = _mm256_setzero_ps();
156  result = _mm256_insertf128_ps(result, low, 1);
157  result = _mm256_insertf128_ps(result, high, 0);
158  return Packet4cf(result);
159 }
160 
161 template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet4cf>(const Packet4cf& a)
162 {
163  return predux(padd(Packet2cf(_mm256_extractf128_ps(a.v,0)),
164  Packet2cf(_mm256_extractf128_ps(a.v,1))));
165 }
166 
167 template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet4cf>(const Packet4cf& a)
168 {
169  return predux_mul(pmul(Packet2cf(_mm256_extractf128_ps(a.v, 0)),
170  Packet2cf(_mm256_extractf128_ps(a.v, 1))));
171 }
172 
173 
175 
176 template<> EIGEN_STRONG_INLINE Packet4cf pdiv<Packet4cf>(const Packet4cf& a, const Packet4cf& b)
177 {
178  return pdiv_complex(a, b);
179 }
180 
181 template<> EIGEN_STRONG_INLINE Packet4cf pcplxflip<Packet4cf>(const Packet4cf& x)
182 {
183  return Packet4cf(_mm256_shuffle_ps(x.v, x.v, _MM_SHUFFLE(2, 3, 0 ,1)));
184 }
185 
186 //---------- double ----------
187 struct Packet2cd
188 {
189  EIGEN_STRONG_INLINE Packet2cd() {}
190  EIGEN_STRONG_INLINE explicit Packet2cd(const __m256d& a) : v(a) {}
191  __m256d v;
192 };
193 
194 #ifndef EIGEN_VECTORIZE_AVX512
195 template<> struct packet_traits<std::complex<double> > : default_packet_traits
196 {
197  typedef Packet2cd type;
198  typedef Packet1cd half;
199  enum {
200  Vectorizable = 1,
201  AlignedOnScalar = 0,
202  size = 2,
203 
204  HasAdd = 1,
205  HasSub = 1,
206  HasMul = 1,
207  HasDiv = 1,
208  HasNegate = 1,
209  HasSqrt = 1,
210  HasAbs = 0,
211  HasAbs2 = 0,
212  HasMin = 0,
213  HasMax = 0,
214  HasSetLinear = 0
215  };
216 };
217 #endif
218 
219 template<> struct unpacket_traits<Packet2cd> {
220  typedef std::complex<double> type;
221  typedef Packet1cd half;
222  typedef Packet4d as_real;
223  enum {
224  size=2,
225  alignment=Aligned32,
226  vectorizable=true,
227  masked_load_available=false,
228  masked_store_available=false
229  };
230 };
231 
232 template<> EIGEN_STRONG_INLINE Packet2cd padd<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_add_pd(a.v,b.v)); }
233 template<> EIGEN_STRONG_INLINE Packet2cd psub<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_sub_pd(a.v,b.v)); }
234 template<> EIGEN_STRONG_INLINE Packet2cd pnegate(const Packet2cd& a) { return Packet2cd(pnegate(a.v)); }
235 template<> EIGEN_STRONG_INLINE Packet2cd pconj(const Packet2cd& a)
236 {
237  const __m256d mask = _mm256_castsi256_pd(_mm256_set_epi32(0x80000000,0x0,0x0,0x0,0x80000000,0x0,0x0,0x0));
238  return Packet2cd(_mm256_xor_pd(a.v,mask));
239 }
240 
241 template<> EIGEN_STRONG_INLINE Packet2cd pmul<Packet2cd>(const Packet2cd& a, const Packet2cd& b)
242 {
243  __m256d tmp1 = _mm256_shuffle_pd(a.v,a.v,0x0);
244  __m256d even = _mm256_mul_pd(tmp1, b.v);
245  __m256d tmp2 = _mm256_shuffle_pd(a.v,a.v,0xF);
246  __m256d tmp3 = _mm256_shuffle_pd(b.v,b.v,0x5);
247  __m256d odd = _mm256_mul_pd(tmp2, tmp3);
248  return Packet2cd(_mm256_addsub_pd(even, odd));
249 }
250 
251 template <>
252 EIGEN_STRONG_INLINE Packet2cd pcmp_eq(const Packet2cd& a, const Packet2cd& b) {
253  __m256d eq = _mm256_cmp_pd(a.v, b.v, _CMP_EQ_OQ);
254  return Packet2cd(pand(eq, _mm256_permute_pd(eq, 0x5)));
255 }
256 
257 template<> EIGEN_STRONG_INLINE Packet2cd ptrue<Packet2cd>(const Packet2cd& a) { return Packet2cd(ptrue(Packet4d(a.v))); }
258 template<> EIGEN_STRONG_INLINE Packet2cd pand <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_and_pd(a.v,b.v)); }
259 template<> EIGEN_STRONG_INLINE Packet2cd por <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_or_pd(a.v,b.v)); }
260 template<> EIGEN_STRONG_INLINE Packet2cd pxor <Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_xor_pd(a.v,b.v)); }
261 template<> EIGEN_STRONG_INLINE Packet2cd pandnot<Packet2cd>(const Packet2cd& a, const Packet2cd& b) { return Packet2cd(_mm256_andnot_pd(b.v,a.v)); }
262 
263 template<> EIGEN_STRONG_INLINE Packet2cd pload <Packet2cd>(const std::complex<double>* from)
264 { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cd(pload<Packet4d>((const double*)from)); }
265 template<> EIGEN_STRONG_INLINE Packet2cd ploadu<Packet2cd>(const std::complex<double>* from)
266 { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cd(ploadu<Packet4d>((const double*)from)); }
267 
268 template<> EIGEN_STRONG_INLINE Packet2cd pset1<Packet2cd>(const std::complex<double>& from)
269 {
270  // in case casting to a __m128d* is really not safe, then we can still fallback to this version: (much slower though)
271 // return Packet2cd(_mm256_loadu2_m128d((const double*)&from,(const double*)&from));
272  return Packet2cd(_mm256_broadcast_pd((const __m128d*)(const void*)&from));
273 }
274 
275 template<> EIGEN_STRONG_INLINE Packet2cd ploaddup<Packet2cd>(const std::complex<double>* from) { return pset1<Packet2cd>(*from); }
276 
277 template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet2cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
278 template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet2cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
279 
280 template<> EIGEN_DEVICE_FUNC inline Packet2cd pgather<std::complex<double>, Packet2cd>(const std::complex<double>* from, Index stride)
281 {
282  return Packet2cd(_mm256_set_pd(std::imag(from[1*stride]), std::real(from[1*stride]),
283  std::imag(from[0*stride]), std::real(from[0*stride])));
284 }
285 
286 template<> EIGEN_DEVICE_FUNC inline void pscatter<std::complex<double>, Packet2cd>(std::complex<double>* to, const Packet2cd& from, Index stride)
287 {
288  __m128d low = _mm256_extractf128_pd(from.v, 0);
289  to[stride*0] = std::complex<double>(_mm_cvtsd_f64(low), _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1)));
290  __m128d high = _mm256_extractf128_pd(from.v, 1);
291  to[stride*1] = std::complex<double>(_mm_cvtsd_f64(high), _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1)));
292 }
293 
294 template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet2cd>(const Packet2cd& a)
295 {
296  __m128d low = _mm256_extractf128_pd(a.v, 0);
297  EIGEN_ALIGN16 double res[2];
298  _mm_store_pd(res, low);
299  return std::complex<double>(res[0],res[1]);
300 }
301 
302 template<> EIGEN_STRONG_INLINE Packet2cd preverse(const Packet2cd& a) {
303  __m256d result = _mm256_permute2f128_pd(a.v, a.v, 1);
304  return Packet2cd(result);
305 }
306 
307 template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet2cd>(const Packet2cd& a)
308 {
309  return predux(padd(Packet1cd(_mm256_extractf128_pd(a.v,0)),
310  Packet1cd(_mm256_extractf128_pd(a.v,1))));
311 }
312 
313 template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet2cd>(const Packet2cd& a)
314 {
315  return predux(pmul(Packet1cd(_mm256_extractf128_pd(a.v,0)),
316  Packet1cd(_mm256_extractf128_pd(a.v,1))));
317 }
318 
320 
321 template<> EIGEN_STRONG_INLINE Packet2cd pdiv<Packet2cd>(const Packet2cd& a, const Packet2cd& b)
322 {
323  return pdiv_complex(a, b);
324 }
325 
326 template<> EIGEN_STRONG_INLINE Packet2cd pcplxflip<Packet2cd>(const Packet2cd& x)
327 {
328  return Packet2cd(_mm256_shuffle_pd(x.v, x.v, 0x5));
329 }
330 
331 EIGEN_DEVICE_FUNC inline void
332 ptranspose(PacketBlock<Packet4cf,4>& kernel) {
333  __m256d P0 = _mm256_castps_pd(kernel.packet[0].v);
334  __m256d P1 = _mm256_castps_pd(kernel.packet[1].v);
335  __m256d P2 = _mm256_castps_pd(kernel.packet[2].v);
336  __m256d P3 = _mm256_castps_pd(kernel.packet[3].v);
337 
338  __m256d T0 = _mm256_shuffle_pd(P0, P1, 15);
339  __m256d T1 = _mm256_shuffle_pd(P0, P1, 0);
340  __m256d T2 = _mm256_shuffle_pd(P2, P3, 15);
341  __m256d T3 = _mm256_shuffle_pd(P2, P3, 0);
342 
343  kernel.packet[1].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 32));
344  kernel.packet[3].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 49));
345  kernel.packet[0].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 32));
346  kernel.packet[2].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 49));
347 }
348 
349 EIGEN_DEVICE_FUNC inline void
350 ptranspose(PacketBlock<Packet2cd,2>& kernel) {
351  __m256d tmp = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 0+(2<<4));
352  kernel.packet[1].v = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 1+(3<<4));
353  kernel.packet[0].v = tmp;
354 }
355 
356 template<> EIGEN_STRONG_INLINE Packet2cd psqrt<Packet2cd>(const Packet2cd& a) {
357  return psqrt_complex<Packet2cd>(a);
358 }
359 
360 template<> EIGEN_STRONG_INLINE Packet4cf psqrt<Packet4cf>(const Packet4cf& a) {
361  return psqrt_complex<Packet4cf>(a);
362 }
363 
364 } // end namespace internal
365 
366 } // end namespace Eigen
367 
368 #endif // EIGEN_COMPLEX_AVX_H
Array< int, Dynamic, 1 > v
Array< int, 3, 1 > b
const ImagReturnType imag() const
RealReturnType real() const
#define EIGEN_ALIGN16
#define EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(PACKET_CPLX, PACKET_REAL)
Definition: ConjHelper.h:14
#define EIGEN_DEBUG_ALIGNED_STORE
#define EIGEN_DEBUG_ALIGNED_LOAD
#define EIGEN_DEBUG_UNALIGNED_STORE
#define EIGEN_DEBUG_UNALIGNED_LOAD
#define EIGEN_DEVICE_FUNC
Definition: Macros.h:883
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
@ Aligned32
Definition: Constants.h:238
Packet4d ploadu< Packet4d >(const double *from)
Packet2cd psub< Packet2cd >(const Packet2cd &a, const Packet2cd &b)
Definition: AVX/Complex.h:233
Packet2cd ptrue< Packet2cd >(const Packet2cd &a)
Definition: AVX/Complex.h:257
Packet padd(const Packet &a, const Packet &b)
void pstore(Scalar *to, const Packet &from)
Packet4d pload< Packet4d >(const double *from)
unpacket_traits< Packet >::type predux(const Packet &a)
Packet8h ptrue(const Packet8h &a)
Packet4cf pcplxflip< Packet4cf >(const Packet4cf &x)
Definition: AVX/Complex.h:181
Packet2cf ploaddup< Packet2cf >(const std::complex< float > *from)
Packet4cf pand< Packet4cf >(const Packet4cf &a, const Packet4cf &b)
Definition: AVX/Complex.h:92
Packet2cd pload< Packet2cd >(const std::complex< double > *from)
Definition: AVX/Complex.h:263
Packet4cf pandnot< Packet4cf >(const Packet4cf &a, const Packet4cf &b)
Definition: AVX/Complex.h:95
std::complex< double > predux_mul< Packet2cd >(const Packet2cd &a)
Definition: AVX/Complex.h:313
Packet2cf pnegate(const Packet2cf &a)
Packet4cf ploaddup< Packet4cf >(const std::complex< float > *from)
Definition: AVX/Complex.h:108
std::complex< float > pfirst< Packet4cf >(const Packet4cf &a)
Definition: AVX/Complex.h:143
Packet2cd ploaddup< Packet2cd >(const std::complex< double > *from)
Definition: AVX/Complex.h:275
Packet8f ploadu< Packet8f >(const float *from)
void pstoreu(Scalar *to, const Packet &from)
Packet4cf por< Packet4cf >(const Packet4cf &a, const Packet4cf &b)
Definition: AVX/Complex.h:93
Packet2cf pcmp_eq(const Packet2cf &a, const Packet2cf &b)
bfloat16 pfirst(const Packet8bf &a)
std::complex< double > predux< Packet2cd >(const Packet2cd &a)
Definition: AVX/Complex.h:307
std::complex< float > predux_mul< Packet4cf >(const Packet4cf &a)
Definition: AVX/Complex.h:167
Packet pmul(const Packet &a, const Packet &b)
void ptranspose(PacketBlock< Packet2cf, 2 > &kernel)
Packet2cd pset1< Packet2cd >(const std::complex< double > &from)
Definition: AVX/Complex.h:268
Packet4cf psub< Packet4cf >(const Packet4cf &a, const Packet4cf &b)
Definition: AVX/Complex.h:66
Packet4cf pload< Packet4cf >(const std::complex< float > *from)
Definition: AVX/Complex.h:97
Packet2cd por< Packet2cd >(const Packet2cd &a, const Packet2cd &b)
Definition: AVX/Complex.h:259
EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pdiv_complex(const Packet &x, const Packet &y)
std::complex< float > predux< Packet4cf >(const Packet4cf &a)
Definition: AVX/Complex.h:161
Packet8f pload< Packet8f >(const float *from)
std::complex< double > pfirst< Packet2cd >(const Packet2cd &a)
Definition: AVX/Complex.h:294
Packet2cd ploadu< Packet2cd >(const std::complex< double > *from)
Definition: AVX/Complex.h:265
unpacket_traits< Packet >::type predux_mul(const Packet &a)
Packet8h pand(const Packet8h &a, const Packet8h &b)
Packet4cf pxor< Packet4cf >(const Packet4cf &a, const Packet4cf &b)
Definition: AVX/Complex.h:94
Packet2cd pxor< Packet2cd >(const Packet2cd &a, const Packet2cd &b)
Definition: AVX/Complex.h:260
Packet2cd padd< Packet2cd >(const Packet2cd &a, const Packet2cd &b)
Definition: AVX/Complex.h:232
Packet4cf pmul< Packet4cf >(const Packet4cf &a, const Packet4cf &b)
Definition: AVX/Complex.h:77
Packet pdiv(const Packet &a, const Packet &b)
Packet4cf padd< Packet4cf >(const Packet4cf &a, const Packet4cf &b)
Definition: AVX/Complex.h:65
Packet2cf pconj(const Packet2cf &a)
Packet2cd pcplxflip< Packet2cd >(const Packet2cd &x)
Definition: AVX/Complex.h:326
Packet4cf ptrue< Packet4cf >(const Packet4cf &a)
Definition: AVX/Complex.h:91
Packet2cd pmul< Packet2cd >(const Packet2cd &a, const Packet2cd &b)
Definition: AVX/Complex.h:241
Packet2cf preverse(const Packet2cf &a)
Packet4cf ploadu< Packet4cf >(const std::complex< float > *from)
Definition: AVX/Complex.h:98
Packet2cd psqrt< Packet2cd >(const Packet2cd &a)
Definition: AVX/Complex.h:356
Packet2cd pand< Packet2cd >(const Packet2cd &a, const Packet2cd &b)
Definition: AVX/Complex.h:258
Packet2cd pandnot< Packet2cd >(const Packet2cd &a, const Packet2cd &b)
Definition: AVX/Complex.h:261
Packet4cf psqrt< Packet4cf >(const Packet4cf &a)
Definition: AVX/Complex.h:360
Packet4cf pset1< Packet4cf >(const std::complex< float > &from)
Definition: AVX/Complex.h:101
internal::add_const_on_value_type_t< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) > real_ref(const Scalar &x)
: InteropHeaders
Definition: Core:139
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:82
Definition: BFloat16.h:222